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ABSTRACT

The distortion field defined by the ellipticities of galaxy shapes as projected on the sky can be uniquely
decomposed into a gradient and a curl component. If the observed ellipticities are induced by weak gravita-
tional lensing, then the distortion field is curl-free. Here we show that, in contrast, the distortion field result-
ing from intrinsic spin alignments is not curl-free. This provides a powerful discriminant between lensing and
intrinsic contributions to observed ellipticity correlations. We also show how these contributions can be dis-
entangled statistically from the ellipticity correlations or computed locally from circular integrals of the ellip-
ticity field. This allows for an unambiguous detection of intrinsic galaxy alignments in the data. When the
distortions are dominated by lensing, as occurs at high redshifts, the decomposition provides a valuable tool
for understanding properties of the noise and systematic errors. These techniques can be applied equally well
to the polarization of the microwave background, where it can be used to separate curl-free scalar perturba-
tions from those produced by gravity waves or defects.

Subject headings: cosmic microwave background — cosmology: theory — gravitational lensing

1. INTRODUCTION

The shapes of distant galaxies can be distorted as a result
of gravitational lensing by the intervening matter distribu-
tion (Gunn 1967; see, e.g., Bartelmann & Schneider 2001 for
a recent review and further references). While the distor-
tions are usually small, a signal can still be detected statisti-
cally, since neighboring objects will be deformed in a similar
way, thereby producing measurable correlations in galaxy
shapes. Recently, shape distortions of the order of 1% have
been detected by several groups in deep galaxy surveys on
scales from 10 up to several arcminutes (van Waerbeke et al.
2000; Wittman et al. 2000; Bacon, Refregier, & Ellis 2000;
Kaiser, Wilson, & Luppino 2000). The amplitude of these
distortions appears consistent with that predicted from
weak lensing by large-scale structure.

Weak lensing is not the only possible source of galaxy
shape correlations: these can also arise between physically
close galaxies as a consequence of the galaxy formation
process or subsequent interactions. One possible mecha-
nism for this is the coupling of galaxy spins: galaxy disks
tend to be oriented perpendicular to their angular momen-
tum vectors, so angular momentum couplings of neighbors
will induce alignments in the projected galaxy shapes. This
will also be true, but to a lesser extent, for elliptical galaxies
if they rotate along their shortest axis. The amplitude of the
expected shape correlations from angular momentum cou-
plings have been studied recently in numerical simulations
by Lee & Pen (2000, 2001) and Heavens et al. (2000) and
analytically by Crittenden et al. (2001, hereafter CNPT),
while alternative mechanisms for intrinsic correlations have
also been suggested (Croft & Metzler 2000; Catelan,
Kamionkowski, & Blandford 2001). Intrinsic correlations
will be especially important in relatively shallow surveys

such as the 2dF or the Sloan Digital Sky Survey, where the
median redshift is51. Evidence for the existence of such
intrinsic correlations in the nearby universe has been pre-
sented recently by Pen, Lee, & Seljak (2000) and Brown et
al. (2000), looking in the Tully and the Super COSMOS gal-
axy catalogs, respectively.

One way of disentangling the intrinsic shape correlations
from those induced by weak lensing is to examine the pat-
terns of the average galaxy shapes. The shapes of galaxies
are typically described by 2 degrees of freedom: their aver-
age ellipticity and orientation. The distribution of galaxy
shapes can be described by a symmetric and traceless two-
dimensional tensor field. In general, any such tensor field
can be written as a sum of two terms, one of which is curl-
free and the other is divergence-free. In analogy with the
radiation field in electromagnetism, these are usually
referred to as the ‘‘ electric ’’ (E) and the ‘‘ magnetic ’’ (B)
component, respectively.

Lensing by a point mass will create a tangential, curl-free
distortion pattern. The most general distortion field pro-
duced by lensing will be a linear superposition of such pat-
terns and will also be a curl-free (i.e., E type) field (Kaiser
1992; Stebbins 1996; Pen 2000). As we show below, how-
ever, the distortion field resulting from intrinsic spin align-
ments has E- and B-type modes of the same order of
magnitude. This property will enable us to uniquely disen-
tangle angular momentum correlations and to subtract their
contribution from a measured distortion field in order to
more accurately compute and isolate the distortions
induced by lensing alone. When the deformations are domi-
nated by lensing, the E-B decomposition can improve the
signal-to-noise level, since noise and other systematic effects
are expected to contribute to both the E and B channels.
Current surveys have measured the sum of E and B powers,
thus doubling the noise power relative to the decomposition
strategy that we propose here.

The expected amplitude of galaxy shape correlations is
fairly small. In order to measure it given the large scatter in
the intrinsic shapes of galaxies, many galaxies must be
observed. At present, observations of mean ellipticities are
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dominated by the intrinsic scatter. Direct decomposition
into E and Bmodes is a nonlocal operation requiring deriv-
atives of these noisy observations, so it is very problematic.
Here we show how the correlation functions of the observ-
able ellipticities can be converted directly into correlations
of the E and Bmodes.

It is also useful to have locally defined quantities that
reflect the E and B decomposition. Kaiser et al. (1994) and
Schneider et al. (1998) looked at this issue in the context of
lensing and developed a statistic known as the ‘‘ aperture
mass,’’ which enabled them to put a lower bound on the
projected mass in a localized region of the sky. More gener-
ally, this statistic gives a direct, local measure of the electric
contribution to the distortion field, and a similar observable
can be evaluated to measure the magnetic component. We
develop this formalism here and relate the correlations of
these local E and B estimators to those of the observable
ellipticities.

This paper is organized as follows. We begin by defining
the E-B decomposition in terms of observed ellipticities and
demonstrate that the lensing distortions are curl-free,
whereas those resulting from intrinsic alignments are not. In
x 3, we discuss estimators of the E-B correlations and their
relation to correlators of the ellipticities. In x 4, we define
the local E and B measures and calculate their correlations.
We conclude in xx 5 and 6 with a cookbook-style summary
on how the E-B decomposition can be derived from the
statistics of weak lensing surveys.

2. DECOMPOSITION OF THE DISTORTION FIELD

The projected shape of a galaxy on the sky can be
approximated by an ellipse with semiaxes a and b (a > b), of
which the major axis makes an angle  with respect to the x-
axis of the chosen coordinate system. It can then be con-
cisely written as a complex number:

� ¼ ða2 � b2Þ
ða2 þ b2Þ e

2i ¼ �þ þ i�� ; ð1Þ

where �þ ¼ j�j cos 2 and �� ¼ j�j sin 2 . The phase depend-
ence / e2i expresses the fact that the ellipticity is invariant
under a rotation over � radians. Note that the two compo-
nents �� and �þ are analogous to theQ andU Stokes param-
eters for linearly polarized light. Given a distribution of
galaxies on the sky with measured ellipticities, the complex
scalar ellipticity field defines a traceless, symmetric 2� 2
tensor field:

½��ab ¼
�þ ��

�� ��þ

� �
: ð2Þ

We have approximated the sky as flat and followed the deri-
vation of Kamionkowski et al. (1998). See Stebbins (1996)
for the generalization to a curved sky.

The shear field equation (2) can be written in terms of a
gradient or ‘‘E ’’ piece and a curl or pseudoscalar ‘‘B ’’ piece
(Stebbins 1996) by introducing two scalar functions,�E and
�B:

�abðxÞ ¼ ð@a@b � 1
2 �abr2Þ�EðxÞ

þ 1
2 ð�cb@a@c þ �ca@c@bÞ�BðxÞ ; ð3Þ

where �ab is the antisymmetric tensor. Each component of

the ellipticity field can be written as a function of �E and �B

as

�þ ¼�xx ¼ ��yy ¼ 1
2 ð@x@x � @y@yÞ�EðxÞ � @x@y�BðxÞ ;

�� ¼�yx ¼ �xy ¼ @x@y�EðxÞ þ 1
2 ð@x@x � @y@yÞ�BðxÞ : ð4Þ

The E and B parts can be extracted explicitly from the shear
tensor by applying ther4 operator,

r4�E ¼ 2@a@b�ab ; r4�B ¼ 2�ab@a@c�bc : ð5Þ

The relation between the functions �E and �B and the pro-
jected gravitational potential will become obvious in what
follows. It is useful to perform the E-B decomposition in
terms of variables that have the same dimension as the mea-
sured ellipticities (Kamionkowski et al. 1998): �E � 1

2r2�E

and �B � 1
2r2�B. These are related to the ellipticities by

r2�E ¼ @a@b�ab ¼ð@x@x � @y@yÞ�þ þ 2@x@y�� ;

r2�B ¼ �ab@a@c�bc ¼ð@x@x � @y@yÞ�� � 2@x@y�þ : ð6Þ

Note that there is ambiguity in the E-B decomposition
when performed over a region with boundaries. To see this,
consider an ellipticity field where �þðxÞ ¼ x and ��ðxÞ ¼ 0:
This can either be a consequence of a pure E mode
(�E ¼ x3=3; �B ¼ 0), the result of a pure B mode
(�E ¼ 0; �B ¼ �x2y=2� y3=6), or a linear combination
of the two. In general, one can achieve the same shear
field with different potentials if ð�0

E ; �
0
BÞ ¼

ð�E þ�E ; �B þ�BÞ, where r4�E ¼ r4�B ¼ 0, and sat-
isfy the ‘‘ conjugate ’’ relations ð@2x � @2yÞ�E ¼ 2@x@y�B and
2@x@y�E ¼ ð@2y � @2xÞ�B:

It follows also that certain observed ellipticity fields, such
as the linear example shown above, are entirely ambiguous
in that they can be interpreted as either purely electric or
purely magnetic. These are generically derived from poten-
tials that satisfy r4�E ¼ r4�B ¼ 0 but that do not satisfy
the above conjugate conditions. Like the linear example,
however, these solutions generally diverge in some direction
and thus are only relevant when there are boundaries to the
area being observed. These ambiguities can result in the
mixing of E and B modes with wavelengths of the order of
the sample size, such as has been seen in recent studies (Hu
&White 2001; Tegmark & de Oliveira-Costa 2001).

A rotation of the basis axes translates �þ into �� and vice
versa but does not affect the E-B decomposition. In particu-
lar, the ellipticity measured in a basis that is at an angle ’
relative to the original basis is given by

�0þ ¼ �þ cos 2’� �� sin 2’ ;

�0� ¼ �þ sin 2’þ �� cos 2’ : ð7Þ

Thus, a global rotation of �=4 transforms �0þ ¼
���; �0� ¼ �þ, but since the position vectors are also
rotated, the E-B decomposition remains invariant. How-
ever, one can also take an ellipticity field and rotate each
ellipticity individually by �=4, keeping the position vectors
fixed. This new ellipticity map has the E and Bmodes of the
original map interchanged: �0E ¼ ��B; �0B ¼ �E .

2.1. Distortions Caused by Lensing

In the case of gravitational lensing, the resultant distor-
tion field � can be written in terms of a gravitational deflec-
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tion potential  as (e.g., Bartelmann & Schneider 2001)

�abðxÞ ¼ ð@a@b � 1
2 �abr

2Þ ðxÞ : ð8Þ

The deflection potential  is a convolution over the
projected surface mass density �ðxÞ,  ðxÞ ¼
1=�

R
dx0�ðx0Þ ln jx� x0j. Comparing this expression to the

E-B decomposition of equation (3), we can identify
�EðxÞ ¼  ðxÞ and �B ¼ 0: Thus, for the shear field induced
by lensing, the E mode is related to �, the projected surface
mass density in units of the critical surface mass density for
a given configuration of source and lens, and the B mode is
identically zero (as was discussed by Kaiser 1995; Kamion-
kowski et al. 1998). Note that weak lensing only approxi-
mately gives pure E modes, as B modes may arise when the
light is bent in more than one scattering event. However,
these Bmodes arise at higher order and are suppressed rela-
tive to the Emodes.

If one measures the E-mode contribution of a given map
and then rotates every measured ellipticity by �=4 and
repeats the same measurement, one obtains an estimate of
the B contribution, which should be consistent with zero for
a pure lensing signal. Therefore, the absence ofBmodes nat-
urally provides a robust test for isolating the lensing compo-
nent of the distortion field and provides an estimate of the
noise level of the data (Kaiser 1992).

Note that lensing is not the only possible source of curl-
free correlations. If the shapes of galaxies are primarily
determined by tidal stretching, this would lead to intrinsic
correlations (Catelan et al. 2001; Croft & Metzler 2000).
For these shape distortions, the observed ellipticities are
also linear in the tidal field, leading to pure electric modes
just as in lensing. For spiral galaxies that have had many
dynamical times to evolve, tidal stretching is likely to be
small compared to the contribution from spin alignments.
Even for elliptical galaxies, a bulk rotation of as small as 1
km s�1 would erase the galaxy’s original alignment. Almost
all observed ellipticals rotate faster than that, so the shape-
shear alignment in Catelan et al. (2001) is unlikely to be
observable. However, it could be significant for larger
objects such as clusters that are dynamically much younger.

2.2. Distortions Caused by AngularMomenta Alignments

Shape correlations between galaxies can also arise from
alignments in the direction of their angular momenta. While
this is particularly true for spiral galaxies, given the assump-
tion that their disks are perpendicular to the angular
momentum vectors, it is true to a lesser extent for elliptical
galaxies as well. Ellipticals probably rotate about their
intermediate axis (Dubinski 1992), so, averaging over all
statistical randomized alignments, the average major axis is
perpendicular to the angular momentum vector, just like a
spiral galaxy. The strength of the correlation signal has
recently been studied in numerical simulations by Heavens
et al. (2000). We have recently attempted to model these the-
oretically (CNPT) by assuming that angular momentum is
induced by tidal torques. Following the formalism devel-
oped by Catelan & Theuns (1996), the correlations can be
calculated for Gaussian initial fluctuations using linear
theory coupled with the Zeldovich approximation.

The induced intrinsic correlations of ellipticities will
result primarily from correlations in the direction of the
angular momenta. As discussed in CNPT, this implies that
the ellipticities are effectively quadratic in the angular

momenta:

���þ / 1
2 T̂TxiT̂Tix � T̂TyiT̂Tiy

� �
; ���� / 1

2 T̂TxiT̂Tiy : ð9Þ

Here, Tij / @i@j� is the shear of the gravitational potential,
and T̂T denotes the shear tensor normalized by TijTij

� �1=2
.

Note that i and j run over three coordinates, x; y; and z, in
contrast to above, where two-dimensional (projected) quan-
tities were considered. The quadratic dependence on the
shear in equation (9) is fundamentally different from the lin-
ear one appropriate for the lensing case, equation (8), and
as a result the Bmodes are nonzero.

In particular, it is straightforward to show that

r2�E /T̂Txi; xxT̂Tix þ T̂Tyi; yyT̂Tiy

þ T̂Txi;xyT̂Tiy þ T̂Tyi; xyT̂Tix þ ðT̂Txi;x þ T̂Tyi; yÞ2 ; ð10Þ

and, similarly,

r2�B / T̂Txi; xxT̂Tiy � T̂Tyi; yyT̂Tix � T̂Txi;xyT̂Tix þ T̂Tyi; xyT̂Tiy : ð11Þ

The amplitude of the Bmodes is comparable to that of the E
modes, as is shown in Figure 1.

Thus, the presence of Bmodes provides a way of identify-
ing when there are significant correlations resulting from
intrinsic alignments. If the mechanism is sufficiently well
understood, then the correlation of B modes resulting from
intrinsic alignments can be used to infer the corresponding
E-mode contribution. This can then be subtracted from the
measured E-mode correlation to find the E-mode contribu-
tion arising from gravitational lensing alone.

This is not the sole means of disentangling intrinsic corre-
lations from weak lensing. The observed ellipticity correla-
tions from intrinsic alignments are strongest at low
redshifts, while the lensing signal is larger when the sources
are at higher redshifts. In addition, morphology distinctions
will be useful, since intrinsic correlations of elliptical gal-
axies are smaller than those of spirals because they are
intrinsically more round, given the same underlying mecha-
nism for galaxy shape alignments. Further possible methods
for distinguishing lensing from intrinsic correlations are dis-
cussed in Catelan et al. (2001) and CNPT.

3. CORRELATION ESTIMATORS

The decomposition into curl and gradient contribu-
tions is most straightforwardly performed in Fourier
space (Kamionkowski et al. 1998). It is often useful,
however, to consider this in real space, as many issues
that might complicate matters in Fourier space, such as
finite field size or patchy sampling, are more easily
handled in real space. In this section we deal with per-
forming the decomposition statistically in real space
using the ellipticity two-point functions. This approach is
particularly relevant when the observations are noise
dominated, such as is the case when there are relatively
few galaxies with which to measure the mean ellipticity,
which is the case for the current surveys on small scales
where most of the lensing signal lies. In the next section,
we will address the issue of a local decomposition.

3.1. Correlations in �E and �B

Here we will relate the correlations of the electric and
magnetic shear directly to correlations of the ellipticity. The
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real-space correlation function of �E is related to correlation
of its corresponding potential,�E , by

�E � h�EðxÞ�Eðxþ rÞi
¼ 1

4 hr2�EðxÞr2�Eðxþ rÞi ¼ 1
4r4�EðrÞ ; ð12Þ

where �EðrÞ � h�EðxÞ�Eðxþ rÞi. An analogous relation
holds for �B correlations, while the cross correlation,
h�E�Bi, is zero if the field is invariant under parity
transformations.

These correlations can be directly computed from the
observed correlations in �þ and ��, defined through

�þðr; ’Þ � h�þðxÞ�þðxþ rÞi ;
��ðr; ’Þ � h��ðxÞ��ðxþ rÞi ; ð13Þ

where the ensemble average is over pairs with separation r,
for which the separation vector r makes an angle ’ with
respect to the chosen basis. The sum of these correlations is
rotationally invariant, but their difference depends explicitly
on the choice of orientation of the coordinate axes
(Kamionkowski et al. 1998).

The required relation between the observed correlations
�þ and ��, and the E-B correlations �E and �B follows from
their definitions using equation (4) written in terms of deriv-
atives with respect to the separation r:

�þðr; ’Þ ¼ 1
8r4½�EðrÞ þ �BðrÞ�
þ 1

8�½�EðrÞ � �BðrÞ� cos 4’ ;
��ðr; ’Þ ¼ 1

8r4½�EðrÞ þ �BðrÞ�
� 1

8�½�EðrÞ � �BðrÞ� cos 4’ ; ð14Þ

where r4 ¼ 8D2 þ 8r2D3 þ r4D4, the operator � ¼ r4D4,
and D � 1=rð Þ @=@rð Þ. We wish to invert these equations to
find expressions for �E and �B in terms of the observable cor-
relation functions.

This inversion can be done most easily in terms of basis
independent correlation functions that we denote �k and �c.
Physically, �k corresponds to the correlation function
h�þðxÞ�þðxþ rÞi, computed in such a way that for each pair
of galaxies, one coordinate axis is always taken parallel to
the separation vector r. A similar definition holds for �c in
terms of h����i, while by isotropy, the expectation of the
cross correlation is zero. These correlations are related by a
rotation to �þðr; ’Þ and ��ðr; ’Þ and satisfy the relations

�kðrÞ þ �cðrÞ ¼ �þðr; ’Þ þ ��ðr; ’Þ ;

½�kðrÞ � �cðrÞ� cosð4’Þ ¼ �þðr; ’Þ � ��ðr; ’Þ : ð15Þ

Note that in these equations, the basis independent correla-
tions arise in terms of the sum and differences of �k and �c,
so for convenience we shall give these combinations their
own symbols �� and �D. In terms of these new observables,
equation (14) simplifies to

��ðrÞ � �kðrÞ þ �cðrÞ ¼ 1
4r4½�EðrÞ þ �BðrÞ�

¼ �þðr; ’Þ þ ��ðr; ’Þ ;
�DðrÞ � �kðrÞ � �cðrÞ ¼ 1

4�½�EðrÞ � �BðrÞ�

¼ 2h �þðr; ’Þ � ��ðr; ’Þ½ � cosð4’Þi : ð16Þ

Initial measurements of the lensing signal have focused
primarily on the variance of the magnitude of the ellipticity
averaged over regions of a given size and its falloff as the size

Fig. 1.—E- and B-mode correlation functions for intrinsic spin correlations in the model of CNPT. The amplitudes of the correlations are determined by
the parameters a and 	, which have been taken to be unity for simplicity. The mean redshift of the sources was taken to be zm ¼ 0:1, and the density correla-
tions were taken to fall off as r�1 in the left figure and as r�3=2 in the right figure. Also plotted are the differences between �E and �k, which are the same as the dif-
ferences between �B and �c. In the left panel, the projected ellipticity correlations fall off as 
�1, and �E and �k are very nearly the same. This is not the case in
general, as can be seen in the right panel, where the projected correlations fall as 
�2. However, the 
�2 is also special in that �E and �B are nearly identical.
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of the regions is increased. The variance is simply the value
of the correlation �þ þ ��, convolved with the appropriate
window function, at zero lag. The variance has the advant-
age that it is a local quantity and is straightforward to meas-
ure. However, the measurements of the variance at different
scales have strongly correlated errors. In addition, since
�þ þ �� ¼ 1

8r4ð�E þ �BÞ, such measurements are unable to
distinguish Emodes from Bmodes. Therefore, it is advanta-
geous to investigate the full correlation functions.

The inversion of equation (14) can now be written as

�EðrÞ ¼ 1
2 ��ðrÞ þ

1
2r

4��1�DðrÞ ;
�BðrÞ ¼ 1

2 ��ðrÞ �
1
2r

4��1�DðrÞ : ð17Þ

An equivalent set of equations follows by applying �r�4

operator to both sides of these equations:

�r�4�EðrÞ ¼ 1
2�r�4��ðrÞ þ 1

2 �DðrÞ ;
�r�4�BðrÞ ¼ 1

2�r�4��ðrÞ � 1
2 �DðrÞ : ð18Þ

Note that these expressions assume statistical isotropy;
that is, h�þ��i ¼ 0 in the basis where the axes are aligned
with the galaxy separation vector.

3.2. Evaluation ofr4��1 and �r�4

It is quite useful to take these relationships into Fourier
space, and the operators r4 and v have particularly simple
expressions when applied to the Bessel functions that arise
in a Fourier transform. In particular,

r4J0ðkrÞ ¼ k4J0ðkrÞ ; �J0ðkrÞ ¼ k4J4ðkrÞ : ð19Þ

When combined with the above equations, we can relate the
correlation functions directly to the E and B power spectra,
reproducing relations (14) and (15) of Kamionkowski et al.
(1998). Also, it is straightforward to show that since the
power spectrum is the Fourier transform of the correla-
tion function, �EðrÞ ¼

R
kdkJ0ðkrÞPEðkÞ implies that

�r�4�EðrÞ ¼
R
kdkJ4ðkrÞPEðkÞ.

The operatorsr4��1 and �r�4 are also most easily eval-
uated in Fourier space and can be shown to take the form

r4��1gðrÞ ¼
Z

kdkJ0ðkrÞ
Z

r0dr0J4ðkr0Þgðr0Þ

¼
Z

r0dr0gðr0ÞGðr; r0Þ ;

�r�4gðrÞ ¼
Z

kdkJ4ðkrÞ
Z

r0dr0J0ðkr0Þgðr0Þ

¼
Z

r0dr0gðr0ÞGðr0; rÞ ; ð20Þ

where

Gðr0; rÞ ¼
Z

kdkJ0ðkrÞJ4ðkr0Þ : ð21Þ

Note that since the k integral is from zero to infinity,
rr0Gðr; r0Þ depends only on the ratio r=r0. This operator is
not simply a convolution as would be the case if Gðr; r0Þ
were a function only of the difference jr� r0j. In fact, the
Fourier space operator takes nearly the same form as the
real space operator. That is, if the Fourier transform of

gðrÞ is gðkÞ, then the transform of
R
r0dr0gðr0ÞGðr; r0Þ isR

k0dk0gðk0ÞGðk0; kÞ.
Alternatively, these operators can be written in integral

form:

r4��1gðrÞ ¼ gðrÞ þ 4

Z 1

r

dr0
gðr0Þ
r0

� 12r2
Z 1

r

dr0
gðr0Þ
r03

;

�r�4gðrÞ ¼ gðrÞ þ 4

r2

Z r

0

dr0 gðr0Þr0 � 12

r4

Z r

0

dr0 gðr0Þr03 :

ð22Þ

While evaluating these expressions formally requires know-
ing the function gðr0Þ to either very large or very small sepa-
rations, the weighting factors mean that in practice the
integrals are dominated by the values of the function either
just above (or just below) r0 ¼ r. Thus, they are in some
sense fairly local operators.

The particular form of the first of the integral operators
follows from choosing integration constants so that
r4 �EðrÞ þ �BðrÞ½ � does not diverge at large separations. To
obtain the second form, we demand that � �EðrÞ � �BðrÞ½ �
and its derivatives are well behaved as r ! 0. The origin of
these integration constants is related to the ambiguities in
the definitions of �E and �B discussed in x 2. For example,
one integration constant in the first line of equation (22)
arises because we can always add constants to �E and �B
without changing the observed shear.

3.3. Power-Law Solutions

As an illustration, consider the case where the correlation
functions both behave as power laws with the same index,
�kðrÞ ¼ Arn and �cðrÞ ¼ Brn. Note that r4��1rn ¼ f ðnÞrn,
where f ðnÞ ¼ ðn2 þ 6nþ 8Þ=ðn2 � 2nÞ. It then follows that

�E;B ¼ f ðnÞ�r�4�E;B ¼ 1
2 ðAþ BÞ � ðA� BÞf ðnÞ½ �rn : ð23Þ

Note that for certain power laws, n ¼ �2 or n ¼ �4, the
operator r4��1rn ¼ 0, while it diverges when n ¼ 0 or
n ¼ 2. The opposite is true for the inverse operator �r�4,
which diverges when n ¼ �2 or n ¼ �4 and is zero for n ¼ 0
or n ¼ 2.

In the case when the B modes are exactly zero, as occurs
for gravitational lensing, one obtains ðAþ BÞ ¼
ðA� BÞf ðnÞ: It follows that the ratio of the correlation func-
tions is given by

�k

�c
¼ n2 þ 2nþ 4

4ðnþ 1Þ : ð24Þ

This expression diverges when n ¼ �1, which therefore
implies that �c ¼ 0 in this case. Kaiser (1992) also consid-
ered power-law spectra in the lensing case and presented
results for a number of spectral indices. Our results agree
qualitatively, but the agreement is not exact. Kaiser calcu-
lated these numerically, which might be the source of the
discrepancies.

3.4. Application to Spin Correlations

We can apply this technique to the correlations arising
from intrinsic spin couplings. The ellipticity correlations
were calculated for the model described in CNPT, and we
will not go into further detail here. Using the CNPT results
and the above expressions, we can calculate the E andB cor-
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relation functions, which are presented in Figure 1. In con-
trast to the gravitational lensing cases, the E and B modes
are seen to be of comparable magnitude in this model.

Various parameter choices have been made in the exam-
ples we have shown, but we believe the E-B decomposition
to be largely independent of most of these. For simplicity,
the figures assume the galaxies are effectively perfect disks
(a ¼ 1 in the notation of CNPT). Using more realistic gal-
axy shapes will only suppress the overall amplitude of the
correlations. We have also assumed that the angular
momentum directions correspond with those that would be
predicted by linear theory (	 ¼ 1). Nonlinear evolution
may affect the direction of a galaxy’s angular momentum,
but as long as these changes are not coherent they will only
suppress the overall correlation amplitudes. Finally, we
have assumed a mean redshift for the sources of zm ¼ 0:1.
Changing this will change the angular scale at which a given
level of correlations are seen, but it should not affect the
nature of the E-B decomposition.

As discussed above, one factor that could affect the E-B
decomposition is the rate at which ellipticity correlations
drop off. The case when the density correlation falls off as
r�1 implies that for large separations, the projected elliptic-
ities fall off as 
�1, where h is the angular separation. Since
f ð�1Þ ¼ 1, �E will be the same as �k, and �B will be the same
as �c. This is shown in the left panel of Figure 1. Also shown
in the right panel is the case when the density correlation
falls off as r�3=2 and the projected ellipticity drops as 
�2. In
this case, f ð�2Þ ¼ 0 and �E ¼ �B ¼ 1

2 ð�k þ �cÞ: Note that
here the � modes are actually anticorrelated at large
separations.

4. LOCAL CORRELATORS

Here we will consider local estimators of the E and B
modes. These are generalizations of the ‘‘ mass aperture ’’
formalism of the pure lensing case, proposed by Kaiser et al.
(1994), developed further by Schneider et al. (1998), and
applied to CMB polarization by Seljak & Zaldarriaga
(1998). They showed that a convolution of the tangential
shear with a given wavelet provided a measure of the pro-
jected mass convolved with a related wavelet. More gener-
ally, the integrals of the tangential shape distortions can be
directly related to the local ‘‘ electric ’’ distortion. Thus, E
modes are associated with either tangential or radial pat-
terns, as shown in Figure 2 (left panel). The Bmodes are also
related to the circular distortion pattern, but these have an
associated ‘‘ handedness ’’ or orientation, as shown in Fig-
ure 2 (right panel).

The local correlators are most easily defined by consider-
ing polar coordinates about a given point. The E mode is
related to the tangential shear, which is the local �þ (or Q
Stokes parameter) in a coordinate system defined by the
radial vector to that point. The B mode corresponds analo-
gously with the local �� mode (or U Stokes parameter) in
the same basis and can be thought of as a �=4 shear. These
quantities are related to the original ellipticity field by a ’
dependent rotation:

�t ¼ �þ cosð2’Þ þ �� sinð2’Þ ;
�c ¼ �� cosð2’Þ � �þ sinð2’Þ : ð25Þ

Figure 2 shows modes where �tð’Þ and �cð’Þ are independ-
ent of ’.

It is possible to show that circular integrals of �t and �c
are directly related to the �E and �B contained interior to the
circle. Using the relations of equation (4) in polar coordi-
nates ðr; ’Þ, one can show

�t ¼
1

2
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� 1

r

@
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�B ;
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1
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@’

� �
�E : ð26Þ

We can use the polar form of r2 to relate the derivatives of
the potential to �E . If we integrate these equations over ’,
the derivatives with respect to ’ drop out and it can be
shown that

1

2�

Z 2�

0

d’�EðrÞ ¼
1

2�

Z 2�

0

d’�tðrÞ þ
1

�r2

Z r

0

r0dr0
Z 2�

0

d’�Eðr0Þ

¼ 1

2�

Z 2�

0

d’�tðrÞ þ 2

Z r

0

dr0

r0
1

2�

Z 2�

0

d’�tðr0Þ : ð27Þ

A similar relation holds when replacing �E ! �B and
�t ! �c.

We can convolve these relations with a compensated filter
UðrÞ. This filter may be arbitrary, but we will require thatR
d2rUðrÞ ¼ 0. For example, one might take it to have the

shape of a Mexican hat. Multiplying both sides by rUðrÞ
and integrating over r, one obtains the local estimators

�EðxÞ �
Z

d2r�Eðxþ rÞUðrÞ ¼
Z

d2r�tðxþ rÞQðrÞ ;

�BðxÞ �
Z

d2r�Bðxþ rÞUðrÞ ¼
Z

d2r�cðxþ rÞQðrÞ; ð28Þ

where it follows by integrating by parts that
QðrÞ ¼ UðrÞ � 2=r2ð Þ

R r

0 r
0Uðr0Þdr0. The functionUðrÞ can be

taken to be zero outside a given radius, so these relations
become purely local. Thus, we have a local measure of the
E-B decomposition related solely to the ellipticity in that
region. In the absence of instrumental and sampling noise,
lensing predicts that �B will be identically zero for any point
on the sky.

The correlations of these local measures can be computed
as follows:

h�Eð0Þ�EðRÞi ¼
Z

d2k

2�
ÛU

2ðkÞeik xR

Z
d2rh�Eð0Þ�EðrÞieik x r

¼
Z

d2r
1

2
��ðrÞ þ r4��1�DðrÞ
� �

Wðjrþ RjÞ

¼ 1

2

Z
d2r��ðrÞWðjrþ RjÞ

þ 1

2

Z
d2r�DðrÞ ~WWðjrþ RjÞ ; ð29Þ

where we used equation (17) and defined ŴWðkÞ � ÛU
2ðkÞ so

that WðrÞ is the convolution of UðrÞ with itself. The func-
tion ~WWðrÞ can be shown to be a convolution of WðrÞ and
Gðr; r0Þ; i.e.,Z

rdrWðrÞr4��1gðrÞ ¼
Z

rdrWðrÞ
Z

r0dr0Gðr; r0Þgðr0Þ

¼
Z

r0dr0gðr0Þ ~WWðr0Þ : ð30Þ
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From this it follows that ~WWðr0Þ �
R
rdrWðrÞGðr; r0Þ ¼

�r�4Wðr0Þ. The corresponding expression for the B mode
is

h�Bð0Þ�BðRÞi ¼
1

2

Z
d2r��ðrÞWðjrþ RjÞ

� 1

2

Z
d2r�DðrÞ ~WWðjrþ RjÞ : ð31Þ

The variances of the E or B field, smoothed with a given
window UðrÞ, is obtained by setting the separation R ¼ 0.
Note that as in the previous section, we are implicitly
incorporating statistical isotropy in these correlation
expressions.

For concreteness, it is useful to consider a simple example
of a wavelet shape. Following work by van Waerbeke
(1998), assume the radial function to have the form of a
Mexican-hat wavelet, which is the derivative of a Gaussian
function, UðrÞ ¼ ��2ð1� r2=2�2Þ expð�r2=2�2Þ, and its
Fourier transform is simply ÛUðkÞ ¼ 1

2 k
2�2e�k2�2=2: For

this particular choice, the convolution of UðrÞ with it-
self is WðrÞ ¼ ð1=2�2Þ 2� r2=�2 þ r4=16�4ð Þ expð�r2=4�2Þ.
Finally, using the fact that the Fourier representation of
r�4 is k�4, we have

~WWðrÞ ¼ �
�2

2
e�r2=4�2

� �
¼ 1

2�2
r2

4�2

� �2

e�r2=4�2 : ð32Þ

This particular wavelet has the advantages that it is simple,
analytic, and very compact, falling off exponentially at large
distances.

5. DATA ANALYSIS

In this section we address the direct analysis of real survey
data. First, we consider the extraction of the E and B corre-
lators. For this purpose, one needs only to measure the two

pairwise ellipticity correlation functions �k; �c (defined
before eq. [15]) for all pairs of galaxies as a function of sepa-
ration, which has been done by Wittman et al. (2000) and
van Waerbeke et al. (2000) and does not depend on the
geometry of the survey or its boundary shapes. This correla-
tion function (plus its error bars and the covariance matrix
of errors) contains all the second-order statistics of the map
and is a complete and optimal two-point description.

We now have two functions, both of which contain noise,
and our goal is to apply a rotation such that one function
contains lensing signal and the other no lensing signal, but
which will give an estimate of contamination from noise and
intrinsic correlations. Shear variance measurements effec-
tively sum the two correlations, which adds a function that
contains lensing to one that contains no lensing but an equal
amount of noise, thus doubling the amount of noise we
have. Instead, we can define �0ðrÞ ¼ 2

R1
r �Dðr0Þdr0=

r0 � 6r2
R1
r �Dðr0Þdr0=r03. We can now derive pure E-type and

B-type correlators that depend only on correlations at sepa-
rations greater than r:

�EðrÞ ¼
Z

kdkJ0ðkrÞPEðkÞ ¼ �kðrÞ þ �0ðrÞ ;

�BðrÞ ¼
Z

kdkJ0ðkrÞPBðkÞ ¼ �cðrÞ � �0ðrÞ : ð33Þ

Here we have focused on evaluating �EðrÞ rather than
�r�4�EðrÞ because in practice the �r�4 operator tends to
amplify the noise at the expense of the signal for typical
observations. In the case of pure weak lensing, the B-type
correlator should be consistent with pure noise, while �E
contains all the lensing signal and only half the noise. We
have achieved the correlation function analogy of Kaiser’s
45� rotation: rotating all the images by 45� swaps �E and �B.

One can also obtain expressions for the variances of the
fields smoothed by a top-hat filter with radius R. This is
done by convolving the correlation functions with a window
that is proportional to the area of overlap between two

Fig. 2.—Local representations of E (gradient) and B (curl) modes. The Emodes are either tangential or radial, depending on their sign. The Bmodes can be
oriented in either a clockwise or counterclockwise (pictured) direction. Lensing generally brings about only Emodes, while noise and angular momentum cor-
relations can generate both. Local estimators of the E andBmodes can be found by doing a radial weighting of these circular integrals (Kaiser et al. 1994).
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circles of radiusR and separation r:

h�2EðRÞiTH ¼ 2

�R4

Z 2R

0

rdr�EðrÞ

� 2R2 cos�1 r

2R

	 

� r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

4

s2
4

3
5 : ð34Þ

Again, this contains half as much noise power as the stand-
ard procedure of actually convolving the map and comput-
ing its variance.

This decomposition was performed directly on the corre-
lator, and there exists no transformation on the shear map
such that the correlation function of the transformed shear
map is given by equation (33). Similarly, equation (34) is
not identically equal to the top-hat smoothed map variance.
If one actually wants to make a map, the aperture shear
decomposition equation (28) allows one to make a local
decomposed map, whose variance one can then measure.
Note that in making a map, one loses information near the
boundaries, and variation in source counts leads to inhomo-
geneous S/N, decreasing the overall sensitivity to measuring
the true correlation function. Luckily, the aperture mass
approach also allows a direct computation of the same
quantities from the correlation functions, as shown in
equation (31).

6. CONCLUSIONS

Here we have investigated the general decomposition of
flat two-dimensional spin-2 fields into so-called electric (gra-
dient) and magnetic (curl) components. While this decom-
position involves derivatives and is intrinsically nonlocal,
we have shown how local correlations of the electric and
magnetic components can be found, given correlations in
the components of the ellipticity (eqs. [17] and [18]). For the
case of power-law correlations, this implies a relationship
between the spectral index of the correlations and the
relative amplitude of the different types of ellipticity
correlations.

In addition, following Kaiser et al. (1994), we have shown
how local estimators for the electric and magnetic modes
can be constructed from circular integrals of the tangential
and �=4 (orQ andU Stokes parameters) distortions, respec-
tively (Fig. 2). We calculated correlations of these local esti-
mators and related them to the ellipticity correlations.

This decomposition has important consequences when
applied to the projected shapes of galaxies. Gravitational
lensing primarily produces electric modes, as does the tidal
stretching of galaxies. As we have shown here, however,
angular momentum couplings produce E and B modes in
comparable amounts, and one might expect that noise, tele-
scope distortions, and other sources of systematic errors will
produce curl modes as well.

Thus, the presence of Bmodes will be useful for disentan-
gling intrinsic correlations caused by angular momentum
couplings from those induced by cosmic shear and from
gravitational lensing. Even if lensing distortions dominate,
this decomposition will be useful as a means of estimating
the levels of noise and systematic errors in the observations.
In addition, it provides a means of reducing noise levels of
lensing observations by a factor of

ffiffiffi
2

p
(Kaiser 1995).

The prospects for isolating the contribution of B modes
using these local correlators are promising with several of
the ongoing shallow redshift and imaging surveys presently
taking data. These include the Sloan Digital Sky Survey,
2dF, 2MASS, DEEP, and the Isaac Newton Telescope
wide-field survey.5 The low median redshift implies minimal
contamination from the lensing signal and therefore an
improvement in the S/N of the extraction.

Finally, most of these considerations apply equally well
to the imminent observations of CMB polarization (e.g.,
Kamionkowski, Kosowsky, & Stebbins 1997; Zaldarriaga
& Seljak 1997). In this case, scalar fluctuations induce only
E modes, while noise and gravitational radiation induce
both E and B modes. As in the case of galaxy shapes, these
observations will be initially noise dominated, so these kinds
of correlation analyses will be essential. The lessons we learn
from the lensing data now available will be directly applica-
ble to the polarization data when they become available in a
few years’ time.

We thank Ben Metcalf, Neil Turok, and Ludo van Waer-
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PPARC for the award of an Advanced and a postdoctoral
fellowship, respectively.
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