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ABSTRACT

We present the theoretical and analytical bases of optimal techniques to measure weak gravitational shear
from images of galaxies. We first characterize the geometric space of shears and ellipticity and then use this
geometric interpretation to analyze images. The steps of this analysis include measurement of object shapes
on images, combining measurements of a given galaxy on different images, estimating the underlying shear
from an ensemble of galaxy shapes, and compensating for the systematic effects of image distortion, bias from
point-spread function (PSF) asymmetries, and ‘‘ dilution ’’ of the signal by the seeing. These methods mini-
mize the ellipticity measurement noise, provide calculable shear uncertainty estimates, and allow removal of
systematic contamination by PSF effects to arbitrary precision. Galaxy images and PSFs are expressed as
‘‘ Laguerre expansions,’’ a two-dimensional generalization of the Edgeworth expansion, making the PSF cor-
rection and shape measurement relatively straightforward and computationally efficient. We also discuss
sources of noise-induced bias in weak-lensing measurements—selection biases, and ‘‘ centroid ’’ biases arising
from noise rectification—and provide a solution for these and previously identified biases.
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1. INTRODUCTION

Gravitational lensing is a powerful tool for studying the
distribution of matter in the universe because photons are
deflected by all forms of matter, regardless of luminosity,
composition, or dynamical state. Dramatic manifestations
of lensing—multiple images, Einstein rings, and giant arcs,
so-called strong lensing—provide much information on the
highest overdensities in the universe, namely, rich galaxy
clusters, cores of individual galaxies, or collapsed objects.
To characterize the more typical mass structures, or those
without a fortuitously aligned bright background source,
we may use weak gravitational lensing, in which we analyze
the low-order distortions of the ubiquitous background gal-
axies in order to infer the mass distribution. Weak gravita-
tional lensing signals are extraordinarily subtle, even by
astronomical standards: one seeks a shear (or magnifica-
tion) of the galaxy images amounting to a few percent at
most, more typically 0.2%–1% in current studies. Because
the undistorted image is not observable, the lensing distor-
tions must be detected as a perturbation to the intrinsic dis-
tribution in galaxy shapes (or sizes), which have variation of
30% or more, giving a signal-to-noise ratio (S/N) of �1/30
from observation of a single galaxy. Hence a very large
number of galaxies must be observed before the weak lens-
ing becomes detectable over this intrinsic shape noise.
Weak-lensing analyses could not even be attempted until
automated means of measuring very large numbers of gal-
axy shapes became available (Valdes, Tyson, & Jarvis 1983;
Tyson et al. 1984). Furthermore, optical and atmospheric
distortions in a typical sky image cause coherent shape (and
size) distortions that can masquerade as a lensing signal.
Such systematic errors are 1%–10% in a typical image, up
to 50 times larger than the weak-lensing signals. A means to
remove this contamination is crucial; the necessary
analyses can only be conducted with well-calibrated, linear
detectors.

Successful detection of a weak-lensing signal did not
occur until CCD images of sufficient depth and field were
available (Tyson, Valdes, & Wenk 1990), and early detec-
tions were of the �10% shears that are found in the inner
regions of rich clusters of galaxies (Fahlman et al. 1994;
Bonnet, Mellier, & Fort 1994; Smail et al. 1995). In regions
of strong shear, the S/N is sufficiently high that a map of the
lensing mass can be created (Kaiser & Squires 1993). Mellier
(1999) includes a review of results from cluster lensing
studies.

With the increase in collecting area of CCD imagers, suffi-
cient background galaxies can be measured to allow con-
vincing detection of smaller shear signals around weaker
overdensities: around individual weak clusters (Fischer et
al. 1997) or collections of galaxy groups (Hoekstra et al.
2001); and around individual galaxies (Fischer et al. 2000;
Smith et al. 2001; Wilson et al. 2001b). Most dramatically,
lensing signals on random lines of sight, caused by the back-
ground matter fluctuation spectrum, have now been
detected and are one tool for ‘‘ precision cosmology ’’ (Witt-
man et al. 2000; Van Waerbeke et al. 2000; Bacon et al.
2001; Wilson, Kaiser, & Luppino 2001a). As technology has
advanced, weaker and weaker shears have become detect-
able under the shape noise, sometimes as small as a few
tenths of a percent (e.g., Fischer et al. 2000; Jarvis et al.
2002). As a consequence, the demands for rejection of sys-
tematic errors have become more stringent. In many current
weak-lensing publications, it is clear that the uncorrected
systematic effects are only slightly smaller than the signals
under study. It is therefore fair to say that, at present, it is
the analysis techniques, rather than the ability to collect gal-
axy images, that bar the way to higher precision in many
weak-lensing studies.

This paper describes the techniques for extraction of
weak-lensing signals from imaging data, which we have
developed over the past few years to meet these increasing
demands. As described below, our efforts focus on the shear
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rather than the magnification of the galaxy images by the
lens, and hence we are measuring galaxy ellipticities. The
desiderata for a weak-lensing methodology include the
following:

1. Shapes of individual galaxy images are determined
with the highest possible accuracy in the presence of mea-
surement noise on the image.
2. Each shape measurement should have a known error

distribution.
3. Individual galaxy shapes should be combined to yield

an estimate of the underlying lens shear with maximal S/N.
4. The shear estimator should have an error level and a

calibration that can be derived directly from the data with-
out recourse toMonte Carlo simulations.
5. The galaxy shapes should be corrected for the system-

atic biases due to the point-spread function (PSF) to arbi-
trary precision.
6. The scheme must allow for a PSF that varies continu-

ously across the image and is different in each exposure.

Given the intrinsic floor on weak-lensing accuracy
because of shape noise, one might ask why we should
expend much effort on goal 1, which is to minimize the
effects of measurement noise—normally, we consider that
once the ellipticity measurement noise �e is 5�SN �
he2/2i1/2 � 0.3, further gains do not increase the shear
estimation accuracy—the error �� on the lensing distor-
tion � will just become �SN/

ffiffiffiffiffi
N

p
, with N the number of

measured galaxies. We note first that the sky density of
galaxies scales with apparent magnitude m as 10�m, with
0.3 . � . 0.4. If we can cut the shape-measurement
error for a given image noise level, then we can either
use fainter galaxies in our lensing measurement (increas-
ing N) or cut the required exposure time. Second, note
that convolution with a PSF suppresses the measured
lensing signal and the intrinsic shape noise. Hence the
level to which we aim to reduce �e must, for poorly re-
solved galaxies, be well below the canonical 0.3. Thirdly,
we will see in x 4.2 that it may be possible to measure
the shear to an accuracy much better than �SN/

ffiffiffiffiffi
N

p
, in

cases where the distribution of intrinsic galaxy shapes in
the ellipticity plane has a cusp or pole at e = 0. In sim-
ple cases, such as a population of circular disk galaxies,
the accuracy to which we can measure the applied shear
can increase without limit as the measurement noise is
decreased.

The need for traceable uncertainties is also critical, as
weak lensing is used to measure the power spectrum of mass
fluctuations in the universe. In this application, the mea-
surement uncertainties (including shape noise) contribute to
the power spectrum and must be accurately estimated and
subtracted to reveal the true cosmic power spectrum. Of
course, an accurate calibration is also necessary for most
applications to precision cosmology; if one must rely on
simulated data for the calibration, there is always the danger
that the simulations do not properly incorporate some
aspect of the real world.

Finally, the need for removal of the systematic PSF ellip-
ticities to arbitrary precision is extremely strong. In the
course of this paper, we will try to describe other approaches
to the problem and compare with our own. The methods in
most common current use (e.g., Kaiser, Squires, & Broad-
hurst 1995, hereafter KSB) are formally valid only in certain
special cases of PSF. While heuristic adjustment and testing

has demonstrated that the method works to nominal accu-
racy in more general cases, the absence of a generally valid
method is troubling. A formally exact PSF correction
scheme has been put forward by Kaiser (2000, hereafter
K00), which is based upon a Fourier-domain calculation of
the effects of shear and of PSF convolution. Our approach
will be to decompose the image and the PSF into a vector
over orthogonal polynomials and treat the deconvolution
as a matrix operation carried to desired order. A very simi-
lar approach has been independently put forth by Refregier
(2001).

This is a long-winded paper, likely to be read in detail
only by practitioners of weak lensing. A more casual read-
ing will be beneficial to those who wish to understand the
methods and limitations of past and future weak-lensing
analyses. Some of the techniques we develop may be useful
beyond the weak-lensing analysis, for example, our decon-
volution method (x 6.3.5) and the methods for rapid convo-
lution with spatially varying kernels (x 7). As discussed by
Refregier (2001), our orthogonal function decomposition
can be a useful means for compression of galaxy images.

The paper outline is as follows: The following section
describes the mathematical space occupied by ellipticities
and shears. Understanding the geometry of this space
makes it easier to see how our (and other) measurement
schemes work. In x 3, we describe a scheme that uses our
geometric conceptualization of ellipticity to produce meas-
urements with maximal S/N in images with infinitesimal
PSF; a formula for the resultant uncertainty in each elliptic-
ity is also derived. Next, x 4 discusses several schemes for
combining shape measurements of a given galaxy from dif-
ferent exposures and/or filter bands, to obtain the shape
estimate that again offers the best possible S/N and a
closed-form error estimate. Section 5 describes the means to
combine shape estimates from different galaxies to form an
optimal estimate of the underlying lensing shear. In the
absence of measurement noise, this takes a simple closed
form; in the presence of measurement noise, some approxi-
mations must be made to obtain a closed form for the cali-
bration and error of the shear, and hence we do not fully
satisfy goal 4 above. Section 6 is a very extensive discussion
of the effects of the PSF on the image, other approaches to
the problem, and our method for optimal extraction of the
intrinsic shape in this case. In this section we introduce the
Laguerre decomposition technique. Section 7 uses the
Laguerre formalism to construct convolution kernels that
can add symmetries to the PSF of an image; this is one
means of removing the ellipticity biases due to the PSF. Sec-
tion 8 discusses two very important effects that can give rise
to biased lensing measurements even when a perfect deconvo-
lution for PSF effects is possible. It is likely that these biases
are present in all previously published data.

Finally, x 9 puts together all the methods developed in the
paper in a flowchart form, describing how raw image data
are converted into optimized, calibrated lensing shear data.
We reserve for a succeeding paper (Jarvis et al. 2002) the
detailed discussion of the code that implements these meth-
ods, and a verification of its performance on real and simu-
lated data. In appendices to this paper, we present the
formulae for invoking various transformations on the
Laguerre decomposition representation of an image and
derive some approximate PSF correction formulae that
were used for the analyses of Smith et al. (2001) but which
are superseded by the full Laguerre methodology.
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2. GEOMETRY OF SHAPE AND SHEAR

2.1. Linear Approximation to Lensing

The goal of weak gravitational lensing studies is to infer a
distant gravitational potential via the distortions that the
potential’s deflection of light imparts upon the population
of galaxies in the background. The lensing is fully character-
ized by the map u(x) from the observed angular position x
to the source angular position u. The surface brightness
observed at x is equal to that which would have been
observed at u in the absence of the lens. For an individual
background galaxy that is not near a lensing caustic, the
map can be accurately approximated by a Taylor expansion

u ¼ du

dx
xþ u0 : ð2:1Þ

The displacement u0 carries no information (unless the
source is multiply imaged), because the source plane is
unobservable. The 2 � 2 amplification matrix has a unique
decomposition of the form

dx

du
¼ lSR ; ð2:2Þ

whereR is an orthogonal matrix (rotation), S is a symmetric
matrix with unit determinant (shear), and l is a scalar
magnification.

The rotation R is not useful for lensing studies because
the unlensed orientation is not known, and the ensemble of
background galaxies should be isotropic, and hence any col-
lective statistic should be unchanged by rotation. Further-
more, the rotation is absent in the limits of single-screen or
weak lensing.

The magnification l increases the angular size by l and
the galaxy flux by l2. While the unlensed quantities are not
observable, the magnification is still detectable because the
mean flux and size of the population will shift. The magnifi-
cation also reduces the sky-plane density of sources by l2.
The magnification thus modulates the number versus mag-
nitude relations for a given class of background galaxies, in
a manner that depends upon the size/magnitude/redshift
distribution of the original population.

The shear S has 2 degrees of freedom, corresponding to
the ellipticity and position angle imparted on a circular
source galaxy. For weak lensing, this shear is undetectable
on a single galaxy because the unlensed shape is not necessa-
rily circular and is not observed. The collective distribution
of galaxy shapes is assumed to be intrinsically isotropic, and
the applied shear breaks this symmetry, rendering it detect-
able andmeasurable.

Both the shear and the magnification thus produce meas-
urable effects on the ensemble of galaxies and can in theory
be used to quantify the potential. Shear measurements have
been used for numerous quantitative studies, but magnifica-
tion methods still yield, at best, marginal detections (Dye et
al. 2001). There are several factors that favor the shear
method: First, the two effects of magnification (increased
flux and reduced areal density) push the counts of back-
ground sources in opposite directions, weakening the signal.
More importantly, the shear is manifested as a variation in
the mean orientation of galaxy shapes, and this mean is zero
in the absence of lensing; the magnification signal is a modu-
lation of N(m) or some other nonzero quantity. It is always
far easier to measure a small change from zero than a small

change in a nonzero quantity. For example, exploitation of
the magnification effect in the weak-lensing regime would
require absolute photometry to much better than 0.01 mag
accuracy. Magnification measurements, on the other hand,
give a direct measure of the projected mass, whereas mass
reconstructions from shear data are degenerate under the
addition of a constant-density mass sheet. Hence, magnifi-
cation data are very useful when there is no a priori means
of determining the mean mass overdensity in the image.

Henceforth we will ignore the magnification effect and
describe how to optimally measure the shear S.

2.2. Parameterizations of Shear

2.2.1. Diagonal Shears

The simplest shear matrix is a small perturbation aligned
with the coordinate axes:

S� ¼
1þ 1

2 � 0

0 1� 1
2 �

 !
; �51 : ð2:3Þ

The effect of this transformation upon a circular source-
plane object is to induce an elongation along the x-axis, cre-
ating an elliptical image with axis ratio q � b/a = 1 � �.
We can use this matrix as a generator for the full family of
diagonal shear matrices with arbitrary � to obtain

S� ¼
e�=2 0

0 e��=2

 !
; �1 < � <1 : ð2:4Þ

The set of diagonal shear matrices forms a group under
simple matrix multiplication. The operation is com-
mutative and clearly corresponds to simple addition of the
�-parameters:

S�3 ¼ S�2 � S�1 , �3 ¼ �2 þ �1 : ð2:5Þ

For this reason we will call � the conformal shear and will
find it a useful parameterization of shear. Other common
parameterizations of shear include the axis ratio q, the dis-
tortion � (Miralda-Escudé 1991), and the reduced shear
g = �/(1 � �) (Schneider & Seitz 1995), which are related
to � via

q � b=a ¼ e�� ; ð2:6Þ

� � a2 � b2

a2 þ b2
¼ tanh � ; ð2:7Þ

g � 1� q

1þ q
¼ tanh

�

2

� �
: ð2:8Þ

Bonnet &Mellier (1995) define a further set of shear param-
eterizations, also easily expressed in terms of �:

e � 1� q ¼ 2e��=2 sinh
�

2

� �
;

� � 1� q2

1þ q2
¼ tanh � ;

�B � 1þ q2

2q
¼ cosh � ;

� � ��B ¼ sinh � :

Note that for �51, the parameters �, e, �, � , and the distor-
tion � are all equal. Note also that most other author’s
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formulations of shear do not define thematrix S to have unit
determinant and so do not form a group.

2.2.2. General Shear

A general (nondiagonal) shear matrix can be decomposed
into a diagonal shear and rotations as

S�;	 ¼ R	S�R�	

¼
cosh 1

2 � þ cos 
 sinh 1
2 � sin 
 sinh 1

2 �

sin 
 sinh 1
2 � cosh 1

2 � � cos 
 sinh 1
2 �

 !
:

ð2:9Þ

S�,	 transforms a circular source to an ellipse with axis ratio
q = e�� at position angle 	 = h/2. The shear can be repre-
sented as a two-dimensional vector

g � ð�þ; ��Þ � ð� cos 
; � sin 
Þ : ð2:10Þ

Likewise, a shear may be represented as a two-dimensional
distortion (�+, ��), etc. A shear (�+, 0) creates ellipses ori-
ented to the x- or y-axis, while (0, ��) aligns circular sources
to axes at 45� to the coordinate axes. The shear g is not a
vector in the image space but, rather, is a vector in a non-
Euclidean shear space that we describe below.

The full set of shear matrices do not form a group under
matrix multiplication, as Sg2Sg1 may be asymmetric (two-
screen lenses can effect a rotation for this reason). But we
can form a group with an addition operation for two-
dimensional shears defined as

g3 ¼ g2 � g1 , Sg3R ¼ Sg2Sg1 ; ð2:11Þ

where R is the unique rotation matrix that allows Sg3 to be
symmetric. The geometric meaning of the shears is pre-
served, since R will leave a circular source unchanged. The
simplest expression of the composition operation in terms
of components is

cosh �3 ¼ cosh �2 cosh �1 þ sinh �2 sinh �1 cos ð
2 � 
1Þ ;
ð2:12aÞ

sinh �3 sin ð
3 � 
2Þ ¼ sinh �1 sin ð
1 � 
2Þ : ð2:12bÞ

Note that the second equation is not symmetric in the two
operands, and hence the shear matrix group is non-Abelian.
The identity element is � = 0, and the inverse of
g = (�+, ��) is �g = (��+, ���). The addition formula in
terms of distortion components is derivable from equation
(2.12) and is given byMiralda-Escudé (1991):

�3þ ¼
�1þ þ �2þ þ ð�2�=�22Þ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �22

q
�ð�1��2þ� �1þ�2�Þ

1þ d1 x d2
;

�3� ¼
�1� þ �2� þ ð�2þ=�22Þ½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �22

q
�ð�1þ�2�� �1��2þÞ

1þ d1 x d2
:

ð2:13Þ

We omit the derivations of these equations, which are
straightforwardly but tediously executed by composing the
transformation matrices. A more elegant derivation follows
from noting that the transformation equation (2.9) trans-

forms the complex plane as1

z ! z cosh 1
2 �þ; �zzei
 sinh 1

2 � : ð2:14Þ

It will be useful to consider the limit in which �251:

ðdd� dÞþ � � þ ð1� �2Þd�þ
ðdd� dÞ� � d��

�
d�51; �� ¼ 0 :

ð2:15Þ

If we instead make �151, the asymmetry of shear addition
is manifested as a change to the azimuthal component for-
mula:

ðd� ddÞþ � � þ ð1� �2Þd�þ
ðd� ddÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
d��

)
d�51; �� ¼ 0 :

ð2:16Þ

2.3. The ShearManifold

We define a metric distance between two points g3 and g1
in shear space as

s � g3 � g1j j ¼ �2j j; g2 � g3 � ð�g1Þ : ð2:17Þ

The differential form of the metric can be derived by special-
izing equations (2.12a) and (2.12b) to the case ds = �251,
h1 = 0, h2 = h, yielding

�3 ¼ �1 þ ds cos 
 ; ð2:18Þ

3 tanh �1 ¼ ds sin 
 ; ð2:19Þ

which means that the metric is

ds2 ¼ ð�3 � �1Þ2 þ ðtanh2 �1Þð
3 � 
1Þ2 ð2:20Þ
¼ d�2 þ tanh2 � d
2 ð2:21Þ
¼ ð1� �2Þ2d�2 þ �2 d
2 : ð2:22Þ

Note that the � version of the metric has the normal Eucli-
dean form for the radial component, and the � parameter-
ization has the Euclidean form for the tangential
component of the metric, but neither representation gives a
fully Euclidean metric—the shear space is curved. The two-
dimensional shear manifold defined by this metric can be
embedded in Euclidean 3-space, as illustrated in Figure 1.
This geometric depiction of shear is helpful in understand-
ing the transformations of shears. Near � = 0, the surface is
tangent to the Euclidean plane, so small shears add with
Euclidean componentwise addition. The shear-space sur-
face then curves upward, and as the conformal radius �
grows large, the surface approaches a cylinder of unit radius
about the z-axis. If we project the shear surface onto the
z = 0 plane, the radius vector in this plane is equal to the
distortion �. The d vector is confined within the unit circle.

2.4. Definition of Shape

A shear is a transformation of the image plane; we next
need a quantity to describe the shape of an arbitrary galaxy
image. Let I represent some object whose isophotes are a
family of similar ellipses. We can simply parameterize the

1 We thank the anonymous referee for this derivation.
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shape of I by the shear g, which produces this object from
some object I0 having circular isophotes, i.e.,

Ig ¼ SgI0 ) S�gIg ¼ I0 : ð2:23Þ

We could thus call g the conformal shape of the object and
can think of a given ellipse as a location on the shear mani-
fold. More commonly the distortion is used to define the
shape; an object is said to have ellipticity e if a shear with
distortion d = �e makes it circular. We will use the symbol
e since this quantity agrees with the traditional second-
moment definition of ellipticities for truly elliptical objects.
Equation (2.23) makes it obvious how an ellipse with shape
g1 will be transformed under the action of a shear g2; we sim-
ply add the shear to the shape using the addition rules of
shear space (eq. [2.12]):

Sg2Ig1 ¼ Ig3 ; with g3 ¼ g2 � g1 : ð2:24Þ

Likewise we can also say that a distortion d maps the ellip-

ticity e ! d � e. In general, an applied shear may be viewed
as a shift of all shapes along the shear manifold. We will use
e to represent the shape of an image, whereas d represents a
shear, which is a transformation of the image plane. The
shape and shear spaces, however, transform identically
under an applied shear.

A real galaxy has some image intensity distribution I(x),
which may not have elliptical isophotes; we would like to
define a shape for an arbitrary image. By analogy to equa-
tion (2.23), all that is needed is some definition of a
‘‘ round ’’ image. Let M(I ) be any measurement applied to
the image that has the simple property that if M(I ) = 0,
then M(SgI ) 6¼ 0 for any nonzero shear g. Then the condi-
tion M(I ) = 0 is our definition of roundness, and we can
assign a unique shape g to an arbitrary object I(x) by the
condition

MðS�gIÞ ¼ 0 : ð2:25Þ

Any shape defined by such a rule clearly transforms under

δ+

δx

-0.5
s1

s2

s1+s2
s2+s1

η=2

η=1

η=1.5

Fig. 1.—The shaded surface is an embedding of the shear manifold into Euclidean space. The radius vector along this surface is the conformal shear �; the
radius upon projection onto the x-y plane is the distortion � (or ellipticity e). At small � the manifold is tangent to the d-plane, and at large � approaches the
unit cylinder. Two shear vectors s1 and s2 of length � = 1 are plotted from the origin, both on the true shear manifold and in the d-plane. The result of adding
the two vectors is also plotted; displacements do not commute in this non-Euclidean space.
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an applied shear, just as an ellipse does, namely, via equa-
tion (2.24). With any roundness measure M we therefore
have a definition of shapes and their mapping under shears
that follow the rules of addition in shear space. We do not
attempt to prove that the solution to equation (2.25) exists
or is unique.

2.5. Shear in Fourier Space

For consideration of the effects of convolution upon
sheared images, it will be useful to ponder the action of
shears in Fourier space. We first note that shearing an image
I(x) by g is equivalent to shearing its Fourier transform ~II(k)
by�g. For a diagonal shear,

fSgISgIðkx; kyÞ ¼
1

2�

Z
d2x Iðe��=2x; e�=2yÞ exp ½2�iðkxxþ kyyÞ�

ð2:26Þ

¼ 1

2�

Z
d2x Iðx; yÞ exp ½2�iðe�=2kxxþ e��=2kyyÞ�

ð2:27Þ
¼ 2�ð Þ�1~IIðe�=2kx; e��=2kyÞ : ð2:28Þ

Anondiagonal shear must also be equivalent to an opposing
shear in k-space, since rotation of the real-space function
corresponds to rotation in k-space. We can therefore just as
easily define a galaxy’s shape by a roundness criterion in k-
space as in real space. This is useful when considering finite
resolution (x 6) or when analyzing interferometric images
with limited Fourier coverage (Chang &Refregier 2002).

3. OPTIMAL MEASUREMENTS (WITHOUT SEEING)

In this section, we derive an optimum method of measur-
ing galaxy shapes in the case where the angular resolution
and sampling of the instrument are assumed to be perfect.
In x 6, we will treat the more complex case of seeing-
convolved images.

3.1. The Ideal Test for Roundness

We have defined the shape of an image in equation (2.25)
by asking what coordinate shear is needed to make the
object appear round. We need to choose a measurement M
that detects with the highest possible S/N any small depar-
ture of the image from its round state M = 0. It can be
shown that, under some sensible simplifying assumptions
about M, the solution of equation (2.25) becomes equiva-
lent to finding the best least-squares fit of an elliptical-
isophote model to the galaxy image.

We assume first that the measurement will be a linear
function of I(x). Any nonlinear method will prove
extremely difficult to apply to the case in which the image
has been convolved with a PSF—it will be hard to use
the measurements of bright stars to correct the shapes of
faint galaxies for convolution. The most general form of
M is then

MðIÞ ¼
Z

d2xWðxÞIðxÞ ; ð3:1Þ

where W is some weight function. The weight will be
two-dimensional, as the measurement must test for

departure from roundness in both the �+ and �� direc-
tions in shear space.

We consider first the weight component to detect a small
change in �+. We can decompose the image I(r, h) into mul-
tipole elements Im(r) via

IðxÞ ¼ Iðr; 
Þ ¼
X1

m¼�1
ImðrÞeim
 ; ð3:2Þ

ImðrÞ ¼
1

2�

Z 2�

0

d
 Iðr; 
Þe�im
 : ð3:3Þ

We are interested in the change in our measurement upon
mapping of the image I(x) ! ~II(x) = I(Sx), where S is a
shear of amplitude �51 oriented on the x-axis, as in equa-
tion (2.3). The quantity for which we wish to optimize the
S/N can thus be written as

�M ¼ Mð~IIÞ �MðIÞ ¼
X1

m¼�1

Z 1

0

r dr wmðrÞ½~IImðrÞ � ImðrÞ� ;

ð3:4Þ

with wm an arbitrary radial function for each multipole. A
little bit of algebra yields the transformation of multipoles

~IImðrÞ � ImðrÞ ¼ 1
4 �½ðm� 2ÞIm�2 � rI 0m�2

� ðmþ 2ÞImþ2 � rI 0mþ2� þOð�2Þ ; ð3:5Þ

where the primes denote derivatives with respect to r. For
an object with truly circular isophotes, we have Im(r) = 0 for
m 6¼ 0, and the only effect of the shear is to induce a quadru-
pole term ~II2 = ��rI00/4. For objects without perfect circular
symmetry, there are terms beyond the monopole. But for an
object to be thought of as ‘‘ round,’’ the monopole term I0
should dominate the higher multipoles. The monopole is
also the only term guaranteed to be positive for all galaxies.
Hence the largest effect of the shear will be to alter the
m = 	2 quadrupole intensities (which are conjugates of
each other, as I is real). The optimal sensitivity to small
shear should therefore weight only the quadrupole term:

MðIÞ ¼
Z 1

0

r dr I2ðrÞr2wðrÞ

¼ 1

2�

ZZ
r dr d
 Iðr; 
ÞwðrÞr2e�2i
 : ð3:6Þ

It is clear that this quadrupole test is the optimal linear mea-
surement for objects with circular symmetry; for more gen-
eral shapes the shear has effects on other multipoles that can
be measured and used to enhance S/N (related to the sug-
gestions of Refregier 2001). But this would require a knowl-
edge of I4(r) and the other multipoles to construct the ideal
formula; we settle on the simple quadrupole as the best gen-
eral solution, as we are always guaranteed that I0 is present
and positive for any real source. The measurement of some
weighted quadrupole is also the normal definition of elliptic-
ity for weak-lensing measurements (Miralda-Escudé 1991).

Combining equations (3.4), (3.5), and (3.6), we obtain

�M ¼ ��
4

Z
r dr r2wðrÞðrI 00 þ 4I4 þ rI 04Þ : ð3:7Þ

The noise in the measure of M can be derived in two limits:
the most common case will be sky-dominated observations,
for which the variance of the flux in area A is nA, where n is
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the number of sky photons per unit area (it is assumed that I
is in units of photons). In this case we have, from equation
(3.6), the variance of each component of �M:

Var ðMÞ ¼ n

4�2

ZZ
r dr d
 r4w2ðrÞ cos2 2
 : ð3:8Þ

If we ignore the I4 terms in equation (3.7) as being domi-
nated by I0 terms, then the choice of weight function that
optimizes the detectability of the shear � is

woptðrÞ ¼
�I 00
r

¼ � 1

r

dI0
dr

: ð3:9Þ

With this optimal weight, the variance of the measurement
Mwould lead to an error in each component of g equal to

�2� ¼
4n

�

Z
r3 dr½I 00ðrÞ�

2

� ��1

: ð3:10Þ

If the object is much brighter than the night sky, then the
noise is no longer uniform and the optimization becomes

Var ðMÞ ¼ 1

4�2

ZZ
r dr d
 r4w2ðrÞIðrÞ cos2 2
 ; ð3:11aÞ

woptðrÞ ¼
�I 00
rI0

¼ � 1

r

d ln I0
dr

; ð3:11bÞ

�2� ¼
4

�

Z
r3 drðI 00Þ

2=I0

� ��1

: ð3:11cÞ

3.1.1. Gaussian Objects

An elliptical Gaussian object, when sheared to be circu-
lar, will obey

Iðr; 
Þ ¼ I0ðrÞ ¼
f

2��2
e�r2=2�2 : ð3:12Þ

In the sky-limited case the optimal weight is the same Gaus-
sian:

woptðrÞ ¼ �I 00=r / e�r2=2�2 : ð3:13Þ

Note that the optimal weight for shape measurement is in
this case equal to the optimal filter for detection, i.e., a
matched filter. If we define the detection significance � as the
S/N for detection of the object with the matched filter, we
find

�2 ¼ ½
R
dAwðrÞIðrÞ�2R
dA nw2ðrÞ

¼ f 2

4�n�2
; ð3:14Þ

�2� ¼ 16�n�2=f 2 ¼ 2=�ð Þ2 : ð3:15Þ

We therefore end up with the simple result that the error
in each component of the shape is 2 over the detection
significance.

The above derivations assume that the center and the size
� of the Gaussian are known in advance. If there were a sky
filled with Gaussian galaxies, we likely would not know in
advance the size and location of each. We can determine the
centroid in the usual manner by forcing the weighted first
moments to vanish: Z

dAwIrei
 ¼ 0 : ð3:16Þ

The weight for centroiding does not necessarily have to
match that used for the shape measurement, but it is con-
venient to do so. The proper size �w for the weight can be
forced to match the size � of the object by requiring the sig-
nificance to be maximized:

0 ¼ @�

@�w
/
Z

dAwI 1� r2

�22

� 	
: ð3:17Þ

In the limit of a Gaussian with low background noise,
equations (3.11a)–(3.11c) apply, and the optimal weight is
uniform. The detection significance in this case is just
� =

ffiffiffi
f

p
(with the flux f in photons), and we find again that

the standard error in � is equal to 2/�. In practice this situa-
tion can never be realized because the weight extends to
infinity, and at large radii the sky or read noise will domi-
nate the shot noise from the galaxy, and neighboring objects
will impinge upon the integrations. We will henceforth con-
fine our discussion to background-limited observations.

3.1.2. Exponential or Other Profiles

To obtain an optimized measurement of a real galaxy, we
would have to measure its radial profile and construct a cus-
tom optimized weight using equation (3.9). The majority of
galaxies are spirals or dwarfs, which are typically described
by exponential profiles:

IðrÞ / e��r ) woptðrÞ ¼ e��r=r : ð3:18Þ

This weight diverges at the origin, though all the necessary
integrals of the weight are convergent. If the galaxy is truly
cusped in the center, then the intensity near the center is very
sensitive to small shears and is weighted heavily.

In practice it is simpler to adopt a weight function that is
universal (up to a scale factor), especially at low S/N, where
attempts to measure each individual profile would be point-
less. There are a number of reasons to prefer a Gaussian
weight:

1. The Gaussian drops very quickly at large radii, mini-
mizing interference from neighboring objects. Integrals of
all moments are convergent.
2. Weights with central divergences or cusps are difficult

to use in data with finite sampling, and they also amplify the
effects of seeing on the galaxy shapes. The Gaussian is flat at
r = 0.
3. Gaussian weights are analytically convenient, allowing

many useful formulae to be rendered in closed form.
4. Gaussian weights allow construction of the family of

orthonormal basis functions that we will use in later sections
to compensate measured shapes for finite resolution.
5. The Gaussian is not far from optimal for most galaxy

shapes. For a well-resolved galaxy with an exponential pro-
file, the Gaussian weight measures g with only 7% higher
noise than the optimal weight in equation (3.18). In the pres-
ence of seeing, the difference between the Gaussian and opti-
mal weight is even smaller. Recall that anyweight we choose
yields a valid definition of roundness and hence of shape;
the Gaussian just incurs a small penalty in noise level.

The procedure for measuring galaxy shapes is therefore as
follows:

1. Estimate a shape g for the image I and apply the shear
S�g to obtain ~II .
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2. Iterate the center and size of the Gaussian weight func-
tion until the centroid condition (eq. [3.16]) and the maxi-
mum significance condition (eq. [3.17]) are satisfied.
3. Compute the second moments with the Gaussian

weight function

MðIÞ ¼
Z

dAwðrÞIðr; 
Þr2e�2i
; wðrÞ ¼ e�r2=�2 : ð3:19Þ

4. If the real and imaginary parts ofM are zero, then g is
the shape of the object. If not, then we use the measured M
to generate another guess for g and return to step 1.

The process is mathematically equivalent to measuring the
second moments of I(x) with an elliptical Gaussian weight
and iterating the weight ellipticity, center, and size until they
match the measured object shape. It is therefore an adaptive
second-moment measurement. The method is also mathe-
matically equivalent to finding the elliptical Gaussian that
provides the best least-squares fit to the image.

3.2. Uncertainties in Shape Estimates

Once we have settled upon a weight of the form
w = exp (�r2/2�2), we can integrate �M from equation
(3.7) by parts and use equation (3.8) to calculate the var-
iance in g. We will again ignore the I4 terms; this means we
may have a small tendency to over- or underestimate our
shape errors if galaxies tend to be boxy or disky. We first
define the weighted flux fw, significance �, and weighted
radial moments hIrmiw as

fw ¼
Z

dAwI ; ð3:20Þ

�2 ¼ f 2w=Var ð fwÞ ¼ f 2w=�n�
2 ; ð3:21Þ

hIrmiw ¼ f �1
w

Z
dAwIrm : ð3:22Þ

The condition for optimal significance (eq. [3.17]) is

hIr2iw ¼ �2 ; ð3:23Þ

and under this condition the variance in each component of
the shape is

�2� ¼
4�n�2

f 2wð1� a4Þ2
þOð��4Þ ð3:24Þ

¼ 4

�2ð1� a4Þ2
þOð��4Þ ; ð3:25Þ

a4 �
hIr4iw
2� 4

� 1 : ð3:26Þ

The quantity a4 is a form of kurtosis, which is zero for a
Gaussian image. The terms of order ��4 arise from errors in
the centroid determination and are discussed further in x 8.

The procedure for measuring an object of shape g
requires applying a shear �g to the image coordinates x to
produce a coordinate system x0 in which the object appears
round. The uncertainties in equation (3.24) apply in this
sheared coordinate system. Because the object is round in
this frame, there is no preferred direction in the shear space
and the uncertainty region is circular, with an uncertainty of
	�� on each component (�0þ, �

0
�) measured in the sheared

frame. We must reapply a shear +g to restore our measure-
ment to the original coordinate system. This process is illus-
trated in Figure 2. The �-coordinate transformations

Fig. 2.—Scheme for ellipticity measurement and its errors illustrated
schematically. Top: The triangle marks the true shape of a target galaxy,
located in the e-plane. The shape is determined by shearing the image until
the galaxy appears round. In the ellipticity plane, we are moving the object
along the vector to the origin.Middle: Location of the target (and the origi-
nal coordinate grid) in the e-plane after application of the shear that makes
it round. The shaded region represents the uncertainty region for the shape
in the sheared view—the error region must be circular because the image is
round. Bottom: Finally we undo the applied shear, shifting the target and
the error region back to the original shape. This mapping, however, shrinks
the error region by a factor 1 � e2 [(1 � e2)1/2] in the radial [azimuthal]
axes.
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defined in equations (2.12a)–(2.21b), in the limit of
�1 = ��51, indicate that the uncertainty region on g will be
elliptical, with a shrunken principal axis in the circumferen-
tial direction of the shear manifold:

�
 ¼
��

sinh �
) ds ¼ �
 tanh � ¼ �� sech � : ð3:27Þ

If we instead use equation (2.16), we can find the uncertainty
ellipse in the ellipticity plane to be

�e ¼ ð1� e2Þ��; e�
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
�� : ð3:28Þ

So on the e unit circle, the uncertainty ellipse shrinks
radially by 1 � e2 and tangentially by (1 � e2)1/2 as we
transport the error region from the origin back to the
original ellipticity e.

Note that our derivation assumes that the noise charac-
teristics of the image are unchanged when we apply a shear.
This is true in the background-limited case because the noise
spectrum is flat, and our shear matrices S have unit determi-
nant. For an image that has been smoothed or deconvolved,
the power spectrum will have structure and the shear will
alter the noise statistics. We will discuss this in x 6 in the con-
text of finite image resolution.

3.3. Comparison with OtherMethods

Galaxy ellipticities for weak lensing were first determined
by computing unweighted second moments of the intensity
(Tyson et al. 1990). If the moment integrals are taken to
infinity, then the measured ellipticities transform under
shear using the addition rules in equation (2.13), and fur-
thermore, the correction for PSF effects is extremely simple.
It is clearly impractical, however, to carry the integrals to
infinity, since neighboring objects will interfere, the noise is
divergent, and as noted in K00, many common PSFs have
divergent second moments. So the initial methods generally
used some sort of isophotal cutoff to the moments. This has
the disadvantage of creating moments that are nonlinear in
the object flux. An alternative would be to use unweighted
moments within a fixed circular aperture, but as noted by
KSB, the noise properties of unweighted moments are far
from optimal.

In the KSB method, the measured ellipticity êeKSB is com-
puted from the second moments measured with a circular
Gaussian weight with size selected to maximize the detec-
tion significance �. (A different weight function was sug-
gested by Bonnet & Mellier 1995.) The distinction between
the KSB method and ours is that KSB always apply a
weight that is circular in the original image plane; in our
adaptive method, the weight is circular in the sheared image
plane that makes the object round. Or, as viewed in the orig-
inal image coordinates, the weight is an ellipse with shape
iterated to match that of the object. This distinction has two
consequences: First, our adaptive method yields lower
uncertainties for noncircular objects because the weight is a
better match to the image. This effect is minor, though, for
objects with e . 0.5, and a minority of images are more
elliptical then this.

The second, more important advantage over the KSB
method is that our definition of shape via equation (2.25)
guarantees that our measured ellipticities êe are transformed
by an applied shear via equations (2.13). The circular-
weight êeKSB does not have this property—indeed, for an

object with elliptical isophotes, êeKSB does not equal the true
ellipticity. In the KSB method, it is therefore necessary to
calculate a ‘‘ shear polarizability ’’ for each object, describ-
ing the response of êeKSB to a small shear d; this polarizability
depends upon the radial profile and m = 4 moments of the
object. The ‘‘ polarizability ’’ of our measured ellipticities is
just the �51 limit of equations (2.13):

e ! eþ d

1þ d x e
� eþ d� eðd x eÞ : ð3:29Þ

This transformation rule and the shapes of our uncertainty
regions in ellipticity space arise solely from the geometry of
the shear manifold and are independent of the details of the
galaxy images. This will simplify the following discussions
of methods to derive a shear from an ensemble of measured
galaxy shapes.

We implement the adaptive weighted moments scheme in
the program ELLIPTO, described further in Jarvis et al.
(2002).

4. COMBINING EXPOSURES

In a typical observing program, a given background gal-
axy is imaged in a number of different exposures, in one or
more bandpasses. This is done to increase exposure time,
permit rejection of cosmic rays, and/or gather color infor-
mation. Multiple exposures can also reduce systematic
effects by placing data for a given galaxy on different parts
of the detector and in different seeing conditions.

We hence encounter the question of how to combine data
on a given galaxy in different images to an optimal single
measure of the shape. There are two possible approaches:

1. Measure the shape on each exposure, then create a
weighted average of themeasurements as the final shape.
2. Register and average the images, then measure the

object on the combined image.

We first consider which offers the lowest noise on the final
shape. Consider the task of combining N exposures, with
the object having significance �0 on each exposure. Follow-
ing equation (3.24), the uncertainty in the shape of a nearly
round object measured from a single image will be

�2�;0 ¼ 4��2
0 þ C0½Var ðx0Þ�2 ¼ 4��2

0 þ C��4
0 : ð4:1Þ

The second term is the uncertainty due to centroiding error,
and C and C0 are constants of order unity. If we average
measurements (method 1), then we decrease �� by

ffiffiffiffiffi
N

p
. If we

average images (method 2), then we increase � by
ffiffiffiffiffi
N

p
. The

net error on the shape in the two cases is then

�� ¼
2ffiffiffiffiffi
N

p
�0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C=2�20

q
; method 1 ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ C=2N�20

q
; method 2 :

8><>: ð4:2Þ

The two methods are equivalent, except for the centroiding
noise. If �0 is not &5, then averaging images will produce
better accuracy on �. Keep in mind that (a) the galaxy will
not even be detected on the individual exposures unless
�0 & 3, and (b) the galaxy is useless for weak lensing unless
�� . 0.5, which requires N�20 & 16. When N . 3, the cen-
troiding penalty is small for any object that will be useful, so
a combined image is extraneous. When N & 5, there are
many galaxies detectable on the summed image that are not
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detectable on the individual images, and a summed image
has detectability and centroid-noise advantages.

There is a compromise, ‘‘method 1.5,’’ which has the
practical advantages (delineated below) of method 1, while
retaining the small S/N edge of method 2: that is to create a
summed image and use it for object detection and centroid
determination, so that Var (x0) � 1/N�20. Then this centroid
is used to measure shapes on individual exposures, and the
shape errors are equivalent to method 2. In practice, we will
combine deconvolved Laguerre coefficients (x 6.3) rather
than measured shapes.

There are several reasons why it may be preferable to
average catalogs instead of images:

1. Correction of shapes for PSF effects is paramount and
only possible if the PSF is constant or slowly varying across
the image. If the different exposures in a summed image
overlap only partially, then the PSF (and noise level) will
jump discontinuously as one crosses the boundaries of com-
ponent exposures. It is therefore preferable to correct for
PSF effects on an exposure-by-exposure basis. If the PSF is
very stable (e.g., a space telescope) or if the exposures all
have nearly the same pointing (a single deep field), then a
summed image will have well-behaved PSF variations.
2. For the smallest objects, the exposures with the best

seeing will contain nearly all the useful shape information
and should be weighted heavily (Fischer & Kochanski
1994). Large objects are, on the other hand, measured
equally well in every exposure. Averaging catalogs allows
one to adjust the weights of different exposures on an
object-by-object basis, whereas this is not possible when
combining images.
3. If there are exposures in different bands, then the opti-

mal weighting of the exposures is dependent upon the color
of the object. This is easily done when averaging cataloged
shapes but not easily done by summing images.
4. Creation of a summed image requires registration and

interpolation of pixels. The latter process smooths the noise
field and causes subtle variations in the PSF, both of which
complicate later analyses.
5. An especially pernicious hazard to creating a summed

image is that slight misregistration of the component images
will cause coherent elongations of the images, which if not
corrected will mimic a lensing signal. This is discussed by
KSB; in theory such effects are handled by a proper PSF
correction scheme. This is a danger for method 1.5 as well.

Some practical advantages to method 2, combining images,
are as follows:

1. The data storage and processing requirements can be
lower for a single combined image ifN is large.
2. In method 1, outliers (from cosmic rays) are rejected

on an object-by-object basis, whereas in method 2 rejection
is pixel-by-pixel. If the galaxies are very oversampled and
the cosmic-ray rate is high, method 2 could salvage the
uncontaminated parts of galaxy images that method 1
discards.

For the simplest circumstances (a single-filter stack of
images with common pointing), image averaging is easier
and has few drawbacks. For multifilter or mosaicked data,
catalog averaging is needed. The hybrid method 1.5 is best
for such cases, though more work. In the rest of this section
we detail procedures for each method.

4.1. Combining Images

There are standard tools for combining exposures into a
single image. We remark here upon a few special considera-
tions when doing this for weak-lensing observations.

First, accurate registration is paramount. Our scheme for
image registration is described in Jarvis et al. (2002).

Second, the use of median algorithms is commonplace
but dangerous. Proper correction for PSF effects will require
that the images of bright stars have precisely the same PSF
as do the faint galaxies. But with a median algorithm, the
bright, high-S/N stars will be constructed with a PSF that is
a median of all the exposures. The images of faint objects,
however, will tend toward a PSF that is the mean of all the
exposures, because the noise fluctuations will dominate PSF
variations. The final PSF will therefore vary with magni-
tude. A �-clipping average is much preferred over the
median for the necessary task of cosmic-ray rejection when
combining.

Similarly, one must be careful about rejecting saturated
pixels. There will be many stars that saturate only on the
best-seeing exposures; if the saturated pixels are rejected,
these stars will have final PSFs that are broader than the
PSF for faint objects. Onemust take care to ignore stars that
are saturated in any one of the exposures.

4.2. Combining ShapeMeasurements

Suppose that a given galaxy has been measured to have
ellipticity ei in images i 2 {1, 2, . . . , N}. We desire the e that
best estimates the true ellipticity of the object. Using the
results of x 3.2, we see that in the absence of PSF distortions,
the minimum variance estimate of e will be that which mini-
mizes the v2 given by


2 ¼
X
i

ðe
 eiÞS�1
i ðe
 eiÞ : ð4:3Þ

Here e 7 ei is equivalent to e � (�ei), where � corresponds
to the addition operator introduced in equation (2.11) and
Si is a covariance matrix, which is �2�I in simple cases.

Note that if the ei are measured in different filters, then
the galaxy may have no single well-defined ellipticity. By
‘‘ best estimate,’’ then, we must mean that which offers
the best sensitivity to a weak-lensing distortion, and the
minimum variance combination of the ei is still the desired
quantity.

The 7 is a nonlinear operator, so we could use a nonlin-
ear minimization algorithm to find the value of e at which v2

is minimized. However, this is both impractical for time
considerations and unnecessary, since the values of ��
are usually small. Thus, we can linearize the subtraction
operator

e
 ei ¼ Tiðe� eiÞ þO


ðe� eiÞ2

�
: ð4:4Þ

T can be derived from equations (2.13):

T ¼ 1

1� e2
I � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

e2
e2� �e�eþ

�e�eþ e2þ

 !" #
: ð4:5Þ

The linearized v2 becomes


2 ¼
X
i

ðe� eiÞRiðe� eiÞ ; ð4:6Þ

Ri � TT
i S

�1
i Ti ; ð4:7Þ
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which has a minimum at

e ¼
�X

i

Ri

	�1�X
i

Riei

	
;

Cov ðeÞ ¼
�X

i

Ri

	�1

: ð4:8Þ

This is a standard least-squares solution for the mean of
the ei given covariancesRi in a Euclidean e-space. In the sim-
ple case of S = �2�I, the expression for Ri simplifies consider-
ably, to

R ¼ 1

�2�ð1� e2Þ2
1� e2� e�eþ

e�eþ 1� e2þ

 !
; ð4:9Þ

which is equivalent to equation (3.28). However, when we
apply corrections for PSF dilution, we will find that the
covariance matrix is more generally an ellipse with axes
aligned in the radial and tangential directions. That is,

R ¼ R


�2e 0

0 e2�2


 !
R�
 ; ð4:10Þ

where Rh is a rotation matrix with h = arctan (e�/e+). In
either case the minimization (eq. [4.8]) is numerically
straightforward, and we are left with an uncertainty ellipse
for the mean �ee. It is wise to implement some outlier rejection
algorithm in this process as well.

5. ESTIMATING SHEAR FROM A POPULATION
OF SHAPES

Now we presume to have measured ellipticities ei for a set
of N distinct galaxies, with known measurement uncertain-
ties for each. Our final task is to create a statistic d̂d from the
ei that best estimates the lensing distortion d that has been
applied to this ensemble. There are three main effects that
must be considered in constructing the estimator: First, the
ei respond differently to an applied distortion d, as embodied
by equation (3.29) for true ellipticities, or by shear polariz-
abilities for the KSB estimators, so we need to know the
responsivity R � @d̂d/@d of our statistic. Second, the variety
of ellipticities in the parent (unlensed) galaxy population
causes shape noise in the shear estimate. In most weak-
lensing projects this is the dominant random error, and we
wish to minimize its effects. Third, there is measurement
error in each ellipticity, which we also wish to minimize in
our shear estimator.

Most practitioners have adopted a simple arithmetic
mean of e+ and e� as estimators for the applied distortion
(e.g., Fischer & Tyson 1997, hereafter FT97). Using the
weak-distortion equation (3.29), it is easy to see that in the
absence of measurement error, this estimator has a respon-
sivity R = 1 � �2SN and a variance Var (�̂�+) = �2SN/N,
where we have defined the shape noise �2SN � he2þi (the �-
component has the same properties and shape noise).

Others have realized, however, that rare, highly elliptical
galaxies have too much influence on the arithmetic mean
and should be deweighted. Cutoffs on |e| (Bonnet & Mellier
1995) or other weighting functions w(e) (Van Waerbeke et
al. 2000) have been applied to the ellipticities and tested with
simulations, but without any sort of analytic optimization

or justification. Lombardi & Bertin (1998) consider the opti-
mization of a general weighted sum of second moments
(rather than ellipticities); this unfortunately couples the
ellipticity measurement to the distribution of sizes of the
galaxies and leads them to consider only weights that are
power-law functions of the moments.

Hoekstra, Franx, & Kuijken (2000) present a weighting
scheme that incorporates both measurement error and the
shape noise, and K00 gives a detailed discussion of optimal
weighting for distortion measurements. Both are similar to
our method in many respects, which we comment upon at
the end of this section.

5.1. WithoutMeasurement Error

We start with an unlensed background galaxy population
with ellipticities distributed within the unit circle according
to

dN=N ¼ Pðe0Þd2e0 ¼ Pðe0Þe0 de0 d
0 : ð5:1Þ

A fundamental assumption of weak lensing is that the back-
ground is isotropic so that the unlensed population can have
P depend only upon the amplitude of e0, not its orientation.
The effect of a distortion d is to map the background popu-
lation to a new, anisotropic distribution Pd(e), as illustrated
in Figure 3. We are given a sample of N galaxies from the
new distribution, and our task is to estimate the d that gave
rise to the distribution from the original P.

One approach is to find the value of d that maximizes the
likelihood of the observed ei. This is true when

0 ¼ @

@�þ

X
logPdðeiÞ ¼

@

@�þ

X
logPð �d� eij jÞ : ð5:2Þ

A similar condition holds for ��. These equations define the
maximum likelihood d even for strong distortions—though
there is not in general a closed-form solution for strong d.

For weak lensing (�51), equation (3.29) and the con-
servation of number can be used to derive Pd(e) to first order
in �:

PdðeÞd2e ¼Pðe0Þd2e0 ð5:3Þ

¼Pð �d� ej jÞ @e
0

@e

���� ����d2e ð5:4Þ

�P e� d x e
1� e2

e

� 	� �
1þ 3d x eð Þd2e ; ð5:5Þ

PdðeÞ ¼PðeÞ 1þ d x e 3� 1� e2

e

d logP

de

� 	� �
; ð5:6Þ

logPdðeÞ ¼ logPðeÞ þ d x e 3� 1� e2

e

d logP

de

� 	
: ð5:7Þ

It can further be shown that the maximum likelihood esti-
mator for d takes the form

d ¼ 1

N

X
ei 3� 1� e2

e

d logP

de

� 	
: ð5:8Þ

The parenthesized expression is thus a weight function for
combining ellipticities into a distortion. We can also show
that this weight function is optimal in terms of S/N for weak
distortions, as follows. Let us create an estimator d̂d that is a
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general weighted sum of the ellipticities,

d̂d ¼

X
wðeiÞeiX
wðeiÞ

¼
R
d2e wðeÞePdðeÞR
d2e wðeÞPðeÞ

: ð5:9Þ

The response of this statistic to a small applied shear is

R � @�̂�þ
@�þ

¼

X
w0 @e=@�þð Þeþ þ w @eþ=@�þ½ �

X
w
X

w
�2

�

X
weþ

X
w0 @e=@�þ
X
w
�2 ð5:10Þ

¼

X
½wð1� e2þÞ þ w0ðe2þ=eÞð1� e2Þ�X

w
; ð5:11Þ

where in the last line, we have dropped terms linear in e+ or
e�, which average to zero over an isotropic population.
With an isotropic population, the derivative @�̂��/@�� = R
as well, and the off-diagonal elements of @d̂d /@d are zero.

We may use equation (5.11) to calculate the response of
any weighted estimator by summing over the observed ei,
because the small difference between observed and intrinsic
distributions does not alter R to first order. In the case
where we have some analytic form for P(e), we may replace
the sums with integrals over the distribution to obtain

hRi ¼
R
d2e wðeÞeþð@Pd=@�þÞR

d2e wðeÞPðeÞ
ð5:12Þ

¼
R
d2e wðeÞe2þPðeÞ½3� ð1� e2Þe�1 d logP=de�R

d2e wðeÞPðeÞ
:

ð5:13Þ

In the absence of measurement noise, the variance in d̂d is
due to shot noise. Assuming that the background galaxies
obey Poisson statistics and their shapes are randomly
assigned, we can propagate the Poisson errors through

equation (5.9) to get the expected error:

Var ð�̂�þÞ ¼
R
d2e w2ðeÞe2þPðeÞ

N½
R
d2e wðeÞPðeÞ�2

ð5:14Þ

¼
X

w2ðeÞe2þ
.hX

wðeÞ
i2
: ð5:15Þ

In equation (5.15) it is assumed that the sum is over a suffi-
ciently large ensemble of background galaxies to sample the
distribution P(e). Any weak-lensing measurement has thou-
sands of background galaxies, so this gives a direct estimate
of the error in the shear.

The optimal weight is that which minimizes Var (�+)/R
2,

which is

woptðeÞ / 3� 1� e2

e

d logP

de
ð5:16Þ

¼ 3þ 2
d logP

d log ð1� e2Þ ð5:17Þ

) �� ¼
�
N

Z
d2e PðeÞe2þ 3þ 2

d logP

d log ð1� e2Þ

� �2��1=2

;

ð5:18Þ

where the last line gives the optimized error in �̂�+/R, which
is our calibrated estimate of the distortion. Equation (5.16)
reproduces the maximum likelihood solution in equation
(5.8). This may be compared with the distortion uncertainty
for equal weighting w = 1,

�� ¼
1ffiffiffiffiffi
N

p
�

he2þi
1=2

1� he2þi

	
¼ 1ffiffiffiffiffi

N
p �SN

1� �2SN
: ð5:19Þ

We first see that a simple arithmetic mean of the elliptic-
ities is the optimum estimator only if P / (1 � e2)� for some
exponent �. For the real galaxy population, there can be a
significant gain in accuracy through the use of wopt over

Fig. 3.—Left: Model for intrinsic distribution P(e) of galaxy shapes over the e-plane—it must have circular symmetry. When each galaxy is sheared by
�+ = 0.05, the galaxy distribution shifts to the right as in the middle panel. Right: Change in population under the applied distortion; this is the signal that we
wish to detect. Shape noise arises from the Poisson fluctuations in the population, which is proportional to the left panel’s P(e). The optimal weight for �+
determination is the ratio of the right to the left panel.
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equal weighting. An extreme case is a population of ran-
domly oriented circular disks, for which

PðeÞ ¼ 1

2�e
ð1� eÞ�1=2ð1þ eÞ�3=2 ; ð5:20Þ

) woptðeÞ ¼ 1þ eð Þ=e2 : ð5:21Þ

With w = 1, we would have �� = 0.590/
ffiffiffiffiffi
N

p
. The optimal

weight diverges at e ! 0 to take advantage of the extreme
sensitivity of P(e) to distortion near e = 0. The integral in
equation (5.18) in fact diverges at e = 0, driving �� to zero—
which would be a significant improvement over the equal-
weighting case! Unfortunately, any small measurement
error or departures from circularity for the disks will
smooth out the central spike in P(e), creating a finite value
for ��.

Figure 4 shows the P(e) measured for well-measured gal-
axies in the CTIO lensing survey (Jarvis et al. 2002). These
shape histograms are derived from 230,000 galaxies that are
well resolved (R > 0.4, under the definitions in Appendix C)
and have errors on the intrinsic ellipticity of �� . 0.03—pri-
marily galaxies of magnitude 17 < mR < 22. The shape of
P(e) is observed to be highly dependent upon the surface
brightness (SB) of the galaxies. The low-SB galaxies show
the rise at e > 0.8 expected of a disk population, but there
the distribution drops at e > 0.95 instead of diverging—this
reflects the finite thickness of the disks. There is also no pole
at e = 0 for the low-SB galaxies, showing that the disks are

not perfectly circular. The high-SB galaxies are presumably
early types, since there are very few with e > 0.5. While the
value of P(e = 0) increases with surface brightness, it always
remains finite, but with dP/de < 0. The ideal-weight equa-
tion (eq. [5.16]) therefore grows as 1/e as e ! 0, but the con-
tribution to the S/N does not diverge at zero, as for perfect
disks. None of the P(e) curves is well fitted by a single Gaus-
sian or power law.

The intrinsic ellipticity variance �SN varies from 0.30 to
0.49 between the highest and lowest SB bins. The optimally
weighted distortion S/N per galaxy for high-SB, early types
is 2–3 times higher than for the lowest-SB galaxies, indicat-
ing the desirability of incorporating some galaxy type dis-
criminant—surface brightness, color, or concentration—
into the weighting scheme. The only requirement is, of
course, that the discriminant be independent of ellipticity.
It seems likely that P(e) will vary substantially with
magnitude.

The heavy histogram in Figure 4 combines all well-
measured galaxies with 20 < mR < 21, which we hence-
forth use as a representative measure of the real galaxy
population. The distribution has �SN = 0.38, which would
lead to �� = 0.44/

ffiffiffiffiffi
N

p
for an unweighted average. The

optimal weighting gives �� = 0.33/
ffiffiffiffiffi
N

p
; the weighting

therefore gives a gain equivalent to a 1.8-fold increase in
N. The gain in telescope time is at least as large. This gain
is reduced, however, in the presence of measurement
noise, which will tend to wash out the sharp feature in
P(e), as discussed next.

We reiterate two favorable results of this section: First,
the responsivity R and the variance of d̂d can be expressed
exactly as direct sums over the observed population, for
arbitrary choice of w; there is no need for a calculation of
polarizabilities or recourse to simulated images. Second, we
note that the variance in �̂� can be significantly below the ca-
nonical �2SN/N if the ellipticity distribution P(e) has struc-
ture that is not washed out by measurement noise.

5.2. WithMeasurement Error

A galaxy image with true ellipticity e will be measured at
some ellipticity ~ee, with a probability distribution of p(~ee|e).
We consider a population of galaxies all having the same
significance � and resolution parameter R (see x 6 and
Appendix C), so that they all have a common p(~ee|e). The
measured distribution of ellipticities observed under distor-
tion dwill then be

~PPdð~eeÞ ¼
Z

d2e PdðeÞpð~eejeÞ ; ð5:22Þ

where Pd is the distribution of true ellipticities as in the pre-
vious section. The symmetry of P and p in the ellipticity
plane guarantees that in the absence of distortion, the mea-
sured distribution ~PP(~ee) must again depend only upon the
magnitude, not the direction, of the measured ellipticity.

Equation (5.22) is not strictly a convolution, because the
measurement function p(~ee|e) may depend upon e and not
simply upon (~ee � e)—for example, equation (3.28) describes
how the error ellipses contract as e departs from zero, even
if the significance of the detection is held fixed. In x 6, we will
show that the behavior of the measurement error is different
when the effects of PSF smearing upon the image are impor-
tant, so at this point we will consider p(~ee|e) to be, most gen-
erally, some kind of Gaussian whose 1 � ellipse depends

Fig. 4.—Distribution of intrinsic ellipticities for modestly bright galaxies
(mR � 20); we plot 2�eP(e), rather than P(e), as the nature of the popula-
tion is more apparent. The distribution is highly dependent upon surface
brightness lR, presumably reflecting the difference between spheroid- and
disk-dominated galaxies. The dashed line is the distribution for an isotropic
population of circular disks. The high-l galaxies are more useful for distor-
tion measurements. The heavy histogram combines all surface brightnesses
in the magnitude range 20 < mR < 21. Though it is difficult to tell from this
plot, P(e) is finite and increasing as e ! 0. Optimal weighting takes advan-
tage of this structure to reduce the noise in the distortionmeasurement.
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only upon the magnitude e. An important point is that the
functional form of p(~ee|e) is unchanged by an applied distor-
tion, since p is determined by � and R, which are unchanged
by a pure shear.

Another fact to keep in mind is that, with finite resolution
and noise, it is possible to measure ~ee > 1, if the image noise
makes the object appear smaller than the PSF in some
dimension. Our formulae should therefore be tractable even
for ~ee > 1, and we cannot simply discard such measurements
without contemplating the consequences.

We proceed as in the previous section, by assuming a dis-
tortion estimator of the form

d̂d ¼

X
wð~eeiÞ~eeiX
wð~eeiÞ

¼
R
d2~ee wð~eeÞ~PPdð~eeÞ~eeR
d2~ee wð~eeÞ~PPð~eeÞ

; ð5:23Þ

) hRi ¼ @�̂�þ
@�þ

¼
R
d2~ee½wð~eeÞ~eeþ

R
d2e pð~eejeÞð@PdðeÞ=@�þÞ�R
d2~ee wð~eeÞ~PPð~eeÞ

ð5:24Þ

¼
Z

d2~ee wð~eeÞ~eeþ
Z

d2e PðeÞpð~eejeÞeþ
�

� 3� 1� e2

e

d logP

de

� 	�
Z
d2~ee wð~eeÞ~PPð~eeÞ ; ð5:25Þ

Var ð�̂�þÞ ¼
R
d2~ee w2ð~eeÞ~ee2þ~PPð~eeÞ

N½
R
d2~ee wð~eeÞ~PPð~eeÞ�2

ð5:26Þ

¼
X

w2ð~eeÞ~ee2þ
. X

wð~eeÞ
h i2

; ð5:27Þ

) woptð~eeÞ ¼
1

~PPð~eeÞ

Z
d2e PðeÞpð~eejeÞ eþ

~eeþ
3� 1� e2

e

d logP

de

� 	
:

ð5:28Þ

Given functional forms for the intrinsic distribution P(e)
and the uncertainty function p, we could use equation (5.28)
to derive an optimal weight and use equations (5.25) and
(5.26) to get the responsivity and noise for the estimator
using this or any weight function. In most cases these inte-
grals will not have analytic solutions.

The bracketed quantity under the integral in equation
(5.13) is a galaxy’s responsivity to shear, which depends
upon the intrinsic shape. Equation (5.25) is the average of
this responsivity for the galaxies with some measured shape.
The measurement noise can cause these two quantities to
differ; in other words, a naive determination of the respon-
sivity is biased by the measurement noise. KSB-based meth-
ods will also suffer a calibration error due to this effect;
binning the polarizabilities in parameter space can reduce
the noise in the polarizability but will not remove biases.
Precision cosmology will require that such calibration issues
be addressed—there are unfortunately no cosmic calibra-
tion standards for shear.

The need for P(e) in the above formulae is an unfortunate
complication, since ~PP is the directly observed quantity. Note
that the variance of the estimator can be expressed as a
closed sum over the observed shapes (eq. [5.27]), but the
responsivity cannot. A precise calibration of the resultant
shear-mass maps requires, therefore, that P be estimated
either by deconvolving the observed ~PP with the error distri-
bution p, or by recourse to higher quality images that give P
directly.

Derivation of the optimal weight also requires knowledge
of the intrinsic P, but we can explore some generic cases and
make some approximations that give workable methods.

5.2.1. Approximate Form for Responsivity with Errors

We wish to have a form forR as a sum over the observed
objects and applied weights, as in equation (5.11), for the
case of finite measurement errors. Toward that end we can
take the derivative of equation (5.23), which is greatly sim-
plified if we assume that the measurement error, i.e., ~eei � ei,
does not have any first-order dependence on �. While not
strictly valid, it is a good approximation. In this case

R ¼
X�

wð1� he2þi~eeÞ þ
~ee2þ
~ee

dw

d~ee

� ð1� he2þi~ee � heþe�i~ee~ee�=~eeþÞ
�.X

w ; ð5:29Þ

where the angle brackets indicate an average of the true
quantity at a given measured value, e.g.,

he2þi~ee ¼
Z

d2e pðej~eeÞe2þ ð5:30Þ

¼
R
d2e pð~eejeÞPðeÞe2þR
d2e pð~eejeÞPðeÞ : ð5:31Þ

Note that the weight function w may depend upon ~ee
directly, but also indirectly through some dependence in its
covariance matrix R. If the measurement error function
p(~ee|e) and the intrinsic distribution P(e) have circular sym-
metry, then we must be able to write

he2þi~ee ¼ k0ð~eeÞ þ k1ð~eeÞ~ee2þ ; ð5:32Þ

where k0 and k1 are functions only of the magnitude, not the
direction, of ~ee. Wemust also have he+e�i~ee = k1(~ee)~ee+~ee�. Fur-
ther manipulation, taking advantage of the isotropy of the
parent population, yields

R ¼
X�

w 1� k0 �
k1~ee2

2

� 	
þ
~ee

2

dw

d~ee
ð1� k0 � k1~ee

2Þ
�.X

w : ð5:33Þ

This form for R depends only upon the observed quantities
and the chosen weight scheme, except through the two func-
tions k0 and k1, which we will approximate below. The
resemblance to equation (5.11) is clear. With this equation
and some integration by parts, we may also derive a form
for the optimal weighting function:

wopt ~ee;Rð~eeÞð Þ ¼ 3k1 þ
1

~ee

dk0
d~ee

þ ~ee
dk1
d~ee

� 1� k0 � k1~ee2

~ee

d log ~PP

d~ee
:

ð5:34Þ

5.2.2. Special Case: Gaussians

In general, the functions k0(~ee) and k1(~ee) must be calcu-
lated numerically using a presumed underlying P(e) for the
background population, but analytic solutions are possible
in the case of a Gaussian P(e) with variance �2SN in each
component (the shape noise) and a constant measurement
error �2e on each component. We find that both k0 and k1 are
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independent of ~ee:

k0 ¼ ð1� f Þ�2SN; k1 ¼ f 2 ;

f ¼
�2SN

�2SN þ �2e
: ð5:35Þ

The quantity f is the fraction of the total ellipticity variance
that is attributable to shape noise. When the measurement
noise is small, f � 1, the ideal weight is close to (1 � ~ee2)/
(�2SN + �2e). This is quite similar to the weight adopted by
Hoekstra et al. (2000).

For the Gaussian case, d log ~PP/d~ee is also quite simple, so
equation (5.33) can be used. In our surveys to date (Smith et
al. 2001), we have adopted a weight that results from opti-
mizing the Gaussian case.

5.2.3. Practical, Nearly Ideal Approximation

We obtain an approximation to the correct responsivity
R and resultant ideal weight if we adopt the constant k0 and
k1 functions in equations (5.35) even for non-Gaussian P(e)
distributions. The shape noise �2SN may be defined as the
assumed variance of the underlying e+ and e� and may be
found by subtracting the measurement noise from the
observed h~ee2i. The measurement noise �2e is known for each
galaxy using the methods of this paper; since the covariance
matrix for ~ee is generally anisotropic, some representative
scalar must be selected.

With these guesses for k0 and k1 in hand, R may be esti-
mated with a sum over the observed galaxies using equation
(5.33) for any chosen weight function.

For the real-universe shape distributions measured in the
CTIO survey (Jarvis et al. 2002), we find that the following
‘‘ easy ’’ weight function offers very close to optimal distor-
tion measurements:

w ¼ ½e2 þ ð1:5��Þ2��1=2 ; ð5:36Þ

where �� is the shape uncertainty that the object would have
were it circular (cf. eq. [3.28]).

We can check the accuracy of our approximations
numerically for chosen P(e) and p(~ee|e) functions. We exam-
ine the case in which P(e) is that shown in Figure 4 for gal-
axies with 20 < mR < 21, and the measurement error
follows equation (3.28). We find that the weight function
given by equation (5.34) is in fact very close to optimal for
all noise levels, even when the simple approximations (eq.
[5.35]) are used for the k-functions. The ‘‘ easy ’’ weight
equation (eq. [5.36]) also performs nearly optimally, so most
applications could use this weight and need not attempt to
determine P(e).

A more critical question is whether the approximations
(eq. [5.35]) yield a proper estimate of the calibration factor
R when used with equation (5.33). Figure 5 shows how the
simpleR estimator compares with the correct value in equa-
tion (5.25) for our choice of underlying distribution and the
‘‘ easy ’’ weights (eq. [5.36]). The approximate form yields a
responsivity correct to better than 5% for �� . 0.4. It is clear
from the figure that some detailed knowledge of the under-
lying P(e) distribution will be needed in order to calibrate
lensing measurements to the 1% level.

The bottom panel of Figure 5 shows the potential advan-
tage of optimal weighting. When the measurement error is
&0.2, there is little difference between various weighting
schemes. For an unweighted distortion estimator, the accu-

racy levels out as the measurement noise drops below
�e � 0.2. When optimal weights are used, however, the dis-
tortion errors continue to drop as the measurement error is
pushed toward zero—the optimal weights take advantage
of the e = 0 cusp in the shape distribution. Our ‘‘ easy ’’
weight scheme recovers nearly all this potential gain.

To summarize, a practical method of weighting and cali-
brating the response in the presence of measurement noise is
as follows:

1. Determine the underlying �2SN = he2þi of the intrinsic
distribution. The measurement error �� (or the full cova-
riance matrix) of each galaxy is known from the formulae in
previous sections.
2. Approximate the quantities k0 and k1 with equation

(5.35).
3. Choose a weight function, for example, the ‘‘ easy ’’

form equation (5.36) or, preferably, the optimal form
equation (5.34), which can be derived from the observed
distribution ~PP(~ee).
4. The distortion estimator is the sum form in equation

(5.23). The variance in the estimator is the sum form in
equation (5.27).
5. The estimator (and variance) must be scaled by the

responsivity, which is calculated with equation (5.33).

If more is known about the intrinsic shape distribution, then
more accurate functions for k0 and k1 may be derived and
used in the sums.

Fig. 5.—Top: Approximate, simplified closed-sum estimate of the cali-
bration factorR (eq. [5.33]) relative to the exact form (eq. [5.25]) as a func-
tion of the ellipticity measurement noise at e = 0. The weight function is the
‘‘ easy ’’ eq. (5.36) and the factors k0 and k1 adopt the simple heuristic
approximation (eq. [5.35]). The heavy curve is for the population of
20 < mR < 21 galaxies, the top curve is for a low-SB sample
(20 < lR < 21), and the bottom curve for a high-SB sample (17 < lR < 19),
19), for which the intrinsic P(e) distributions are plotted in Fig. 4. The sim-
ple formulation yields a calibration accurate to 5% or better in all cases, but
1% accuracy is difficult to achieve. Bottom: Uncertainty in the distortion
determination when the galaxy shapes are combined with optimumweights
(solid lines), the ‘‘ easy ’’ weights (eq. [5.36]; dotted lines ), and equal weight-
ing (dashed lines ). The line weights code the galaxy sample, as above. Note
that with optimal or easy weighting, the distortion errors continue to shrink
even when measurement error is well below the canonical shape noise of
0.3.
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5.3. AdditionalWeighting Considerations

The optimal weight may depend upon parameters other
than the observed ellipticity ~ee. It must, for example, depend
upon the measurement errors as described above. If intrinsic
shape distributionP(e) depends upon galaxy type, for exam-
ple, then it may be advantageous to have different weight
functions for each type—as long as galaxy type can be deter-
mined independent of e. Elliptical galaxies may be distin-
guished from spirals, for example, by a concentration ratio
such as the b22 coefficient described below.

The expected shear will depend upon the redshift z of the
background galaxy, and hence there may be a z-dependent
weight determined from photometric redshift estimates of
the background population. More crudely, the apparent
magnitude may be taken as an indicator of z and used in the
weight formulation. The use of such additional weights
depends upon the problem being addressed; see Smith et al.
(2001) as an example.

5.4. Relation to PreviousMethods

The optimal weighting scheme of K00 differs from ours in
several respects. It assumes a different measure of e, which
does not follow our geometric transformation relations, so
the mean polarizability of galaxies must be calculated in
some parameter space, e.g., of flux, size, and e. Binning or
smoothing in some such space is common to most of the
KSB-based weighting schemes as well (Erben et al. 2001;
Hoekstra et al. 2000). The variance of the estimators �̂�i are
calculated within each bin, and then weights are chosen
inversely to the variance of each bin to create a minimum
variance estimator. There are three contributors to the var-
iance from each bin:

1. The intrinsic ellipticities of galaxies within the bin are
drawn at random from the parent distribution. If |e| is one
parameter of the space, then only the direction h is allowed
to vary within the bin. This is of course the shape noise.
2. The measured shape of a given galaxy is drawn from

the measurement error distribution.
3. The number of galaxies within the bin is drawn from a

Poisson distribution. If |e| is a parameter, then this Poisson
noise includes some elements of the shape noise (1) andmea-
surement noise (2).

All three of these effects are important to optimization; all
are included in our formulation and (implicitly) in that of
K00, so we expect them to be essentially equivalent in the
long run—this is not the case, though, for some of the heu-
ristic or parameter-space weight formulations in the litera-
ture. The virtue of our scheme is that the nature of the
weight function is apparent given the intrinsic shape distri-
bution P(e) and the measurement errors, and there is no
need to choose a parameter space for weight selection and
polarizability smoothing. Our formulation tells us when fur-
ther parameters might be desirable, namely, when P(e)
changes significantly.

6. MEASUREMENTS WITH FINITE RESOLUTION

The preceding sections outline a method for optimal
recovery of weak distortion from galaxy images and rigor-
ous estimation of the uncertainties on these shears, for the
case when the detector views the galaxies with perfect reso-
lution. Unfortunately, the finite resolution of real observa-

tions has a strong effect upon shape measurements in every
weak-lensing observation to date, even those using theHub-
ble Space Telescope (HST). Finite resolution produces two
deleterious effects:

1. A PSF that is not circularly symmetric can induce
ellipticities on the images, thus breaking the intrinsic iso-
tropy of the background galaxy population and mimicking
a lensing distortion. This is a bias induced by asymmetric
PSFs. Since present-day weak-lensing surveys are seeking
distortion signals well below 1%, measured shapes must be
compensated for even the slightest asymmetry in the PSF
with some smear correction.
2. Convolution by a circularly symmetric PSF will make

most galaxies appear rounder, driving e ! 0. This is there-
fore a dilution of the true lensing signal. While this mecha-
nism cannot create a lensing signal where there is none, it
can misleadingly modulate the lensing signal or cause a cali-
bration error in the inferred mass distribution.

Most (but not all) approaches to PSF corrections treat the
bias and dilution effects in separate steps. To our knowl-
edge, all published weak-lensing observations have incomplete
PSF correction, leaving systematic distortion errors of a frac-
tion of a percent or higher.While in most cases these residual
systematic effects have not altered the validity of the
authors’ conclusions, the proper correction of PSF effects is
presently the largest barrier to the use of weak lensing for
precision cosmology.

In x 6.1, we review some existing approaches to these
problems, in x 6.2 we contemplate how one would ideally
wish to approach the problem, and in further sections
we develop two means of implementing a nearly ideal
approach: one that treats bias and dilution separately and
another that corrects both problems simultaneously with a
limited form of deconvolution.

6.1. Existing Approaches to PSF Corrections

6.1.1. The Unweighted Ideal

Unweighted second moments of galaxies are ideal meas-
ures of ellipticity—not only do the derived ellipticities trans-
form according to the rules of shear space, but correction
for PSF effects is in principle quite simple because the
unweighted second moment of the image is just the sum of
the original moment and the PSF moment. Thus, by sub-
tracting the PSF moments from the measured moments we
simultaneously correct for bias and dilution and obtain the
image shape. In the case where the PSF is round, the dilu-
tion of a true (preseeing) image-plane ellipticity ei to an
observed (postseeing) ellipticity eo is described by the exact
equation

ei ¼ eo=R ; ð6:1Þ

R � hr2ii
hr2ii þ hr2i?

¼ 1� hr2i?
hr2io

: ð6:2Þ

The resolution parameter R is determined by the unweighted
second radial moment of the measured image hr2io relative
to that of the PSF hr2i?. Two things to note: first, the error
ellipse on the dilution-corrected, preseeing ellipticity ei is
magnified by 1/R from the original measurement error
equation (3.28) and is further stretched in the radial direc-
tion by the uncertainty in R itself. Thus, the error ellipse is
no longer simply described by a single ��. Second, equation
(6.1) can give rise to |ei| > 1, if the noise makes the galaxy
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look smaller than the PSF about some axis. We cannot arbi-
trarily discard such measurements without creating a bias in
our mean shear. These two phenomena are common to all
modes of PSF dilution correction.

This blissfully simple dilution correction is spoiled by two
major problems: First, as discussed above, unweighted sec-
ond moments have divergent noise properties and for this
and other reasons are not practical shape estimators. An
equally serious problem noted by K00 is that the second
moments themselves are divergent for many realistic PSFs.
Further, many galaxies follow de Vaucouleurs profiles, for
which the secondmoment converges very slowly.

The simple formulae (6.1)–(6.2) are still valid under the
special circumstances that the object and PSF are both
Gaussians. The post-PSF object is again a Gaussian, and
deconvolution of Gaussians is a simple subtraction of sec-
ond moments. Hence any shape-measuring algorithm that
extracts the proper ellipticity for a Gaussian ellipsoid would
allow PSF dilution correction via equation (6.1) in this lim-
ited (and unrealistic) case.

Some early weak-lensing measurements (Valdes et al.
1983) adopt second-moment subtraction as a means of PSF
correction, despite the fact that this method is not exact
when isophotally bounded or weighted moments are used,
and the images are not Gaussian. This would not suffice,
however, for the more sensitive measurements being done
today.

6.1.2. Heuristic Methods

In the case of unweighted moments or Gaussians, equa-
tion (6.1) would indicate that a regression of the lensing sig-
nal against hr2i�1

o would yield a distortion free of PSF effects
as hr2i�1

o ! 0. Mould et al. (1994) have attempted to meas-
ure very weak shears in the presence of PSF effects using
such a regression (though against hri�1, in which case a lin-
ear relation is not expected). Even with weighted moments,
we expect the PSF dilution and bias to decrease as the object
becomes well resolved, so there is some basis to this method,
even if it is not exact. Other problems, however, are that the
distortion is not likely to be the same for all sizes of galaxy,
as they likely lie at different distances. Also, the regression
will lead to substantially higher noise than a more direct
dilution correction.

Another approach to the dilution correction is exempli-
fied by FT97, who attempt no analytic correction, instead
calibrating the dilution effect by measuring simulated back-
ground galaxies that have been subjected to the same distor-
tion, seeing, sampling, and noise as the real images. Such a
simulation is an essential test of any weak-lensing method-
ology. The difficulty with sole reliance upon simulated data
is that the result is extremely sensitive to one’s ability to
exactly match the size-magnitude distribution of the true
galaxy population, because the dilution correction is a
strong function of size (as in eq. [6.1]) in the typical regime
of slightly resolved galaxies. Further, as we show below, the
dilution correction depends upon detailed higher order
moments of the galaxy images, which would be very difficult
to simulate faithfully. One alternative is to use high-resolu-
tion, high-S/N images from HST instead of simulated gal-
axies—but the total sky area imaged to sufficient S/N by
HST is a tiny fraction of a square degree, too small for rigor-
ous calibration tests. It would be preferable to have an ana-

lytic correction for dilution and use the simulated data to
spot-check the accuracy of the analytic method.

6.1.3. PerturbativeMethods

A step beyond the unweighted-mean approximation to
the bias correction is taken by KSB and by FT97. Both
make the assumption that the anisotropy of the PSF can be
described as a small anisotropic convolution applied to a
larger, circularly symmetric PSF. In this case, the effect of
the tiny asymmetric deconvolution upon the weighted sec-
ond moments of a given image can be expressed as a fourth-
order weighted moment of the image, which KSB christen
the smear polarizability. Given the smear polarizability of
an image and a measure of the anisotropy of the PSF, the
measured second moments are corrected analytically for the
PSF bias.

The FT97 method differs in that the correction for PSF
anisotropy is applied to the image rather than to the mea-
sured moments: a minimal 3 � 3 convolution kernel is cre-
ated, which will ‘‘ circularize ’’ the PSF. The galaxy shapes
are measured after this kernel is applied to the image.

The primary drawback to these methods (K00) is that the
approximation upon which they are based often fails: a typi-
cal diffraction-limited PSF in no way resembles a small con-
volution to a round PSF, and even a simple aberration such
as coma creates PSFs that violate this condition.

These methods have features, however, that we wish to
retain in any improved formulation. They are easily adapted
to a PSF that varies across the image—the requisite
moments of the PSF are measured wherever a star falls
upon the image and interpolated to the location of each gal-
axy. The FT97 method, by fixing the image, frees us from
having to measure the higher order moments that make up
the smear polarizability, though at the expense of a slight
reduction in image resolution, an increase in the image
noise, or both.

The perturbative methods correct only the PSF bias, not
the dilution, because the dilution cannot be considered a
small perturbation in any extant data set. FT97 calibrate the
dilution with simulations, as mentioned above. The original
KSB work made use of empirical calibration as well, as the
shear polarizability (cf. x 3.3) measures only the susceptibil-
ity of the image to a distortion that might be applied after
the PSF convolution. Wilson, Cole, & Frenk (1996) suggest
an empirical calibration by deconvolving the real images,
applying a shear, reconvolving, and remeasuring to deter-
mine the response. Luppino & Kaiser (1997) introduce the
preseeing shear polarizability, which approximates the sus-
ceptibility of the KSB weighted moments to a shear applied
before the PSF. The preseeing shear polarizability is, to its
lowest order, similar to the resolution factor R introduced
above for unweighted moments. There are, however,
fourth-order moments of galaxy and stellar shapes involved,
and all are measured with Gaussian weights so the noise
does not diverge.

The KSB method, updated to use the preseeing shear
polarizability, is exact for Gaussians and in the limit of a
compact anisotropy kernel, but it is not exact in the general
case (K00). There are additional ambiguities regarding the
appropriate size of the Gaussian weight to be applied when
measuring the PSF moments (Hoekstra et al. 1998). The
updated KSBmethod is in wide use, and several papers have
investigated how accurately it performs for simulated gal-
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axies and PSFs that are not Gaussian (Erben et al. 2001;
Bacon et al. 2001). While it is clear that in many circumstan-
ces KSB is good enough, we would prefer to understand
and overcome its limitations.

We will demonstrate below that the KSB and FT97 bias
corrections are the first terms in a series expansion of the
deconvolution of the galaxy image.

Rhodes, Refregier, & Groth (2000) investigate the KSB
method in some detail, carrying forth the transformation
equations to higher order than do KSB. The PSF correc-
tions, however, still require substantial approximations.
Below we construct a hierarchy of all the weighted moments
of the image and give general formulae for their transforma-
tions under shear, convolution, and other operations.

6.1.4. DeconvolutionMethods

Kuijken (1999) suggests that one determine shear by sum-
ming the images of all the galaxies in some cell and then
comparing this high-S/N summed galaxy image with the
PSF. The summed galaxy image should approach circular
symmetry in the source plane; the shape of the summed
image can thus be modeled relatively simply as a circular
source with arbitrary radial profile, sheared by the lens to
have elliptical isophotes, then convolved with the PSF. He
adopts a flexible parametric representation of this mean
radial profile. A candidate profile with candidate lens distor-
tion can be convolved with the known PSF and compared
with the measured mean image. The radial profile and dis-
tortion are then adjusted to give a best fit. This method can
be viewed as a limited form of deconvolution: the only char-
acteristic of the deconvolved image one cares about is the
ellipticity; the multipoles beyond quadrupole are irrelevant
to the measurement and are discarded.

In Kuijken’s method, the higher order multipoles are dis-
carded by averaging over many galaxies. This may be diffi-
cult in practical situations, where the PSF and/or the
distortion signal are varying across the field too rapidly to
gather sufficient background galaxies to sum. Another
drawback is that summing galaxies’ images may not be the
optimal way to combine their information on the shear.
Kuijken suggests applying the method to individual galaxies
given these potential problems, which amounts to an
assumption that the galaxy ellipticity is constant with
radius. The accuracy of this method is not discussed in
detail. But the method does have the strong advantage of
being able to cope with arbitrary PSF behavior and simulta-
neously removing both the bias and dilution effects from the
measurement.

6.1.5. CommutatorMethod

K00 introduces a new approach to PSF correction, deriv-
ing from the PSF an operator that can be applied to the
observed image to effect the transformation of applying a
given preseeing shear. This operator is derived by consider-
ing the commutation of the shear and convolution opera-
tors in Fourier space. With the operator in hand, the
response to a preseeing shear can be determined directly
from the postseeing image, given sufficiently detailed knowl-
edge of the PSF.

The K00 formulation is the first, to our knowledge, to
offer an exact correction for PSF bias and dilution. We take
a different approach below and then offer some comparisons
of the two approaches.

6.2. OptimalMethods in the Presence of a Convolution

In x 2.5, we noted that a real-space shear is equivalent to
an opposing shear of the Fourier-space image, so that we
can conduct the roundness test in Fourier space. One virtue
of using a Gaussian weight function for our roundness test,
as in equation (3.19), is that this test takes the exact same
form in k-space, namely,

MðIÞ ¼ 0 , 0 ¼ ~MMð~IIÞ ¼
Z

d2k e�k2�2=2IðkÞk2e�2i� :

ð6:3Þ

The only difference is that the Gaussian weight has width
1/� in k-space; i.e., a broader weight in real space is nar-
rower in Fourier space. Furthermore, our assumed uniform
white noise in real space transforms to uniform white noise
in Fourier space. Therefore the entire derivation of the opti-
mal weight in x 3.1 could have been executed in k-space
without any change in the result.

The effect of the PSF convolution is to suppress the image
by some transfer function ~TT(k). With perfect knowledge
of the PSF, we can deconvolve the observed image ~IIo to
retrieve the image-plane transform ~II i = ~IIo/~TT (here we mean
the image plane of the gravitational lens, before the applica-
tion of seeing). A deconvolution would remove the PSF bias
entirely, but the noise is no longer homogeneous in k-space,
having been amplified (perhaps infinitely) by 1/~TT . If the
PSF is close to circularly symmetric, then ~TT is nearly inde-
pendent of direction. If we now imagine making our round-
ness test on the deconvolved k-space image, we adapt
equations (3.7)–(3.9) to give

� ~MM ¼ �

4

Z
k dk k2wðkÞk

d~II i0
dk

; ð6:4Þ

Var ðMÞ ¼ n

4�2

Z
k dk d� k4w2ðkÞ cos

2 2�
~TT2ðkÞ

; ð6:5Þ

) woptðkÞ /
�~TT2ðkÞ

k

d~II i0
dk

: ð6:6Þ

The optimal filter is therefore narrower in k-space than both
d~II/d(k2) and ~TT(k). Hence, in real space, on the deconvolved
image, the optimal filter is broader than both the object and
the PSF. This means that we should, sensibly, restrict our
roundness test to the region of k-space that (1) has signal in
the true galaxy image and (2) is not suppressed below the
noise by the convolution.

Our strategy might then be to create some kind of decon-
volved image and apply a Gaussian weight to test for round-
ness in the deconvolved k-space (which is equivalent to
using a Gaussian weight in real space). For a Gaussian
object with preseeing size �i and Gaussian seeing with size
�
*
, the optimal weight in deconvolved k-space is a Gaussian

with size (2�2� + �2i )
�1/2. Such a roundness test is equivalent

to a roundness test on the observed, real-space image with a
Gaussian weight of size (�2i + �2�)1/2 = �2o. So the optimal
size of the weight is again matched to the size of the observed
image.

Recall that our algorithm for measuring d requires that
we shear the coordinates until the object appears round
( ~MM ! 0). We want to apply this shear to the deconvolved
image. If the object is not round to begin with, then in this
sheared coordinate system the transfer function ~TT(k) will no
longer have azimuthal symmetry, which will invalidate the
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above derivation of the optimal weight. We will still have a
valid measurement of the shape of the deconvolved object,
but possibly with suboptimal noise level. The increase in
noise is a second-order effect, however, so we will not bother
to reoptimize the roundness test for this asymmetric noise
spectrum.

When the transfer function is anisotropic, the noise spec-
trum in the deconvolved image is also anisotropic. There are
subtle second-order effects, described in x 8, that bias the
orientation of the measured shear in the presence of an an-
isotropy in the noise. Such a noise anisotropy is present after
any deconvolution of an anisotropic PSF. A noise an-
isotropy is also present in the observed image, if the PSF is
anisotropic and we are not strictly sky limited. Further-
more, K00 points out a selection bias that can creep into the
shear measurements even with a perfectly unbiased shape-
measurement algorithm. We will discuss means to defeat
these biases in x 8.

Applying a Gaussian weight in deconvolved k-space
leads, formally, to divergent noise if ~TT(k) = 0 for some k.
This is a real problem, as any finite-sized telescopemust pro-
duce a transfer function that is identically zero beyond some
critical kc. The deconvolved image hence has infinite noise
for k > kc, while the Gaussian weight remains finite. As we
shear the k-space to make our source appear round, the
‘‘ wall ’’ of infinite noise moves inward to e��/2kc. In order
for our method to remain feasible, our deconvolution algo-
rithm must not attempt to fully deconvolve those portions
of k-space at or near kc, so that the noise remains bounded.
There is hence a balance to be struck in executing the decon-
volution: we want the carry out the deconvolution to suffi-
ciently high order that the effects of the PSF upon the source
ellipticity are removed, but we do not want to deconvolve
high-order details that will increase the noise. It would seem,
intuitively, that this is possible, since the ellipticity we seek,
the Gaussian-weighted quadrupole moment, is a low-order
characteristic of the deconvolved image.

The method we describe below is based upon an expan-
sion of the image and PSF into hierarchies of Gaussian-
weighted moments—essentially an eigenfunction decompo-
sition. Convolution corresponds to a matrix operation on
the vector of moments. The moment vector, and hence the
convolution matrix, are formally infinite, but we can choose
to truncate the description at some order that we believe to
contain all the useful information on the image ellipticity.
The convolution matrix is then finite and can be inverted,
and the deconvolution executed as a matrix operation. The
high-order moments are not deconvolved, so the noise in
the deconvolved moments remains finite and, in fact, close
to optimally small. This moment-based method reduces the
deconvolution (as well as other transformations) to a matrix
multiplication, which can be executed on an exposure-by-
exposure basis, even for objects with very low S/N on a
single exposure, and is therefore very practical for the pur-
pose of weak-lensing measurements.

6.3. The Laguerre Expansion

6.3.1. Definitions

The simplicity of the formulae for deconvolution in the
special case of Gaussian objects, plus the utility of the Gaus-
sian weight for shape measurements, led us to seek a
description of the image in someGaussian-based expansion.
To maintain the simplest form for convolutions, we look for

a decomposition of our images into components that are
eigenfunction of the Fourier operator. Such functions will
also be eigenfunctions of (�r2 + r2), and hence we are led
to the eigenfunctions of the two-dimensional quantum har-
monic oscillator (QHO).2 In one dimension, the QHO eigen-
functions are each a Gaussian times a Hermite polynomial.
The Edgeworth expansion, familiar to many astronomers,
is a decomposition into one-dimensional QHO eigenfunc-
tions. The two-dimensional version we call the ‘‘ Laguerre
expansion,’’ using the QHO eigenfunctions

Iðr; 
Þ ¼
X
p;q�0

bpq 
�
pqðr; 
Þ ; ð6:7Þ

 �pqðr; 
Þ ¼ ð�1Þqffiffiffi
�

p
�2

ffiffiffiffi
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p!

s �
r

�

	m

eim
e�r2=2�2LðmÞ
q

�
r2

�2

	
ðp � qÞ ; ð6:8Þ

 �qp ¼ �  �pq ; ð6:9Þ
m � p� q : ð6:10Þ

L
ðmÞ
q (x) are the Laguerre polynomials, which are defined by

the generating function

ð1� zÞ�q�1 exp

�
xz

z� 1

	
¼
X1
m¼0

L
ðqÞ
m ðxÞzm ð6:11Þ

(Abramowitz & Stegun 1965). The Laguerre polynomials
satisfy many recurrence relations; the following provide a
way to calculate them rapidly:

L
ðmÞ
0 ðxÞ ¼ 1 ; ð6:12Þ

L
ðmÞ
1 ðxÞ ¼ ðmþ 1Þ � x ; ð6:13Þ

ðqþ 1ÞLðmÞ
qþ1ðxÞ ¼ ½ð2qþmþ 1Þ � x�LðmÞ

q ðxÞ

� ðqþmÞLðmÞ
q�1ðxÞ : ð6:14Þ

A QHO with wave function  pq has angular momentum
m = p � q. We will also make use of the quantum num-
ber N = p + q, which is the excitation energy of the state.
Any two of {N, m, p, q} suffice to specify the state. The
intensity multipole functions Im(r) are composed from the
 Nm for N = |m|, |m| + 2, |m| + 4, . . . . The polynomial in
 pq has terms up to order N in r, and  pq can also be
expressed as the Gaussian times a (complex) polynomial
of order N in x and y. A few low-order  pq are plotted in
Figure 6.

Refregier (2001) has independently introduced the appli-
cation of QHO eigenfunctions to galaxy shape analysis.
Some of the results and ideas presented in this section are
presented therein, and they are applied in Refregier &
Bacon (2001) with different notation. Refregier (2001) also
presents useful relations for a Cartesian-based family of
two-dimensional QHO eigenfunctions. We make use only
of the polar family, which are eigenstates of the angular
momentum and hence have strong rotational symmetry.

The Laguerre functions have many properties we will find
useful. As eigenfunctions of the harmonic oscillator, they
are orthonormal, up to the factor �, which we introduce in

2 Thanks again to the anonymous referee for providing this logic.
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order to give the bpq units of flux:Z
d2x �pqðxÞ �  �p0q0 ðxÞ ¼

1

�2
�pp0�qq0 ; ð6:15Þ

) bpq ¼ �2
Z

d2x IðxÞ �  �pqðxÞ : ð6:16Þ

Thus, bpq is a Gaussian-weighted moment of the intensity.
Since I is real, we must have bpq = �bbqp. When measuring the
bpq from an image with uniform white noise, equation (6.16)
yields a covariance matrix for the bpq that is diagonal:

Cov ðbpq�bbp0q0 Þ ¼ n�2�pp0�qq0 ; ð6:17Þ

where n is the number of counts per unit area. The variance
in bpq is shared between the real and imaginary parts, except
for bpp, which must be real. Nonuniform noise, e.g., shot
noise from the galaxy itself, produces a more compli-
cated covariance matrix, as described by Refregier (2001).
The significance � of detection with the Gaussian filter is

given by

�2 ¼ b200=n�
2 : ð6:18Þ

Our algorithm for measuring object shapes requires find-
ing the coordinate system in which the centroid is zero (eq.
[3.16]) and the roundness test (eq. [3.6]) yields zero. When
disregarding seeing, we also set the weight size � by maxi-
mizing the significance (eq. [3.17]). These conditions are suc-
cinctly stated by the Laguerre coefficients:

Centroid b10 ¼ 0 ; ð6:19Þ
Roundness b20 ¼ 0 ; ð6:20Þ
Significance b11 ¼ 0 : ð6:21Þ

The first two of these equations involve both real and com-
plex components; the third is real. We must satisfy these
equations by translation, shear, and dilation of the object
(or of the underlying coordinate system). These operations

Fig. 6.—First few of the orthogonal functions  pq. Only the real parts are plotted. The characteristics are familiar from their use as eigenfunctions of the
two-dimensional quantum harmonic oscillator: each has 2m = 2|p � q| azimuthal nodes and N � 2m radial nodes, where N = p + q is the number of quanta
in the state. The  20 component is most important, as it responds in first order to shear, and hence its absence is our test for ‘‘ roundness.’’
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can be expressed as transformation matrices acting upon
the vector b = {bpq}. The determination of shape is thus effi-
ciently executed by measuring b in the original coordinate
frame, converting equation (6.16) to a sum over pixels. Then
we can iterate to a solution of our three conditions by
manipulating b, and there is no need to return to the pixel
data.

In the case of finite resolution, we wish to satisfy equa-
tions (6.19) and (6.20) for the deconvolved image. We can
express the deconvolution as a matrix operation on b as
well. So we need to find the matrix equivalents of the trans-
lation, dilation, shear, and convolution transformations.

6.3.2. Raising and Lowering Operators, Point Transformations

The raising and lowering operators for the two-dimen-
sional harmonic oscillator wave functions have the proper-
ties
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Note that the commutators of the operators are all zero
except for [ap, a

y
p] = [aq, a

y
q] = 1. These operators can be

used to formulate the transformation matrices we need.
Consider first a dilation of the image I by factor of 1 + l
with l51 to a new image I0:

I 0ðx; yÞ ¼ I ð1� lÞx; ð1� lÞyð Þ ð6:23Þ
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) b0pq ¼ ð1þ lÞbpq � l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffi
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p
bðp�1Þðq�1Þ : ð6:27Þ

An infinitesimal dilation l thus mixes coefficients
(N 	 2, m) into the (N, m) coefficient—as expected, multi-
pole order m is conserved by the transformation. The dila-
tion transformations are thus generated by the matrix

d ¼ 1� a�pa
�
q þ a�yp a�yq ; ð6:28Þ

and the transformation matrix D for a finite dilation el can
be expressed as

Dl ¼ exp ldð Þ : ð6:29Þ

The finite dilation will preserve m as the generator does but
will mix terms of N + 2j together, with j any integer. The
matrix elements for the finite dilation are derivable in closed
form and in a rapid recursion form; the latter are derived in
Appendix A.

The generator s for the shear transformation is also easily
expressed in terms of the raising and lowering operators.
For a shear �51 along the x-axis,

I 0ðx; yÞ ¼ I ð1� �=2Þx; ð1þ �=2Þyð Þ ð6:30Þ
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S� ¼ exp �sð Þ : ð6:35Þ

In equation (6.34) we have inserted the phase factors that
result from a shear at arbitrary position angle 	. To leading
order, the shear mixes in states with p or q changed by	2; in
the finite case, the shear transformation mixes together bpq,
for which p and q each change by any even number. Note
that this equation generalizes the weighted-moment trans-
formations in Rhodes et al. (2000) to all orders. Note also
that the KSB method identifies the quantity b20/b00 as
the ellipticity, so the ‘‘ shear polarizability ’’ is compactly
expressed using equation (6.34) with p = 2 and q = 0.

An infinitesimal translation of the image by (x0, y0) yields

I 0ðx; yÞ ¼ Iðx� x0; y� y0Þ ð6:36Þ

� 1� x0
@

@x
� y0

@

@y

� 	
I ð6:37Þ

¼ ð1þ zt� �zztyÞI ; ð6:38Þ
z � x0 þ iy0ð Þ=� ; ð6:39Þ
t ¼ 1

2 ða
y
q � apÞ ; ð6:40Þ

) b0pq ¼ bpq þ 1
2 z

ffiffiffi
q

p
bpðq�1Þ �

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
bðpþ1Þq


 �
þ 1

2
�zz

ffiffiffi
p

p
bðp�1Þq �

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

p
bpðqþ1Þ


 �
; ð6:41Þ

Tz ¼ expðzt� �zztyÞ : ð6:42Þ

To leading order the translation changes p or q by 	1, and
the finite translation Tzmixes all the states together. Appen-
dix A gives the matrix elements for all the finite transforma-
tions.

The ‘‘ smear polarizability ’’ coefficients of KSB could be
quickly derived at this point by noting that an infinitesimal
convolution along the x-direction can be expressed as an
average of two images translated by 	x0, which will lead
to a smear generator that is second order in the raising
and lowering operators. Appendix C gives a closely related
derivation.

6.3.3. ShapeMeasurement from Laguerre Decomposition

Our algorithm for shape measurements (with perfect res-
olution) is to find the translation z, dilation l, and shear g
that must be applied to the image to satisfy the conditions in
equations (6.19)–(6.21). If b is the vector of Laguerre coeffi-
cients for the image I, we can write

b0 ¼ Mb ¼ ðSgDlTzÞb ; ð6:43Þ
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and the elements of b0 with (p, q) = (1, 0), (1, 1), and (2, 0)
must vanish. This is in general a complex nonlinear equa-
tion, but for {l, �, z}51, the linearized equations (6.27),
(6.34), and (6.41) yield

b010 ¼ b10 þ ðb10 �
ffiffiffi
2

p
b21Þl� 1

4

ffiffiffi
2

p
b12��� � 1

4

ffiffiffi
6

p
b30�

� 1
2

ffiffiffi
2

p
b20zþ 1

2 ðb00 � b11Þ�zz ; ð6:44Þ
b011 ¼ b11 þ ðb00 þ b11 � 2b22Þl� 1

4

ffiffiffi
6

p
b13��� � 1

4

ffiffiffi
6

p
b31�

þ 1
2 ðb10 �

ffiffiffi
2

p
b21Þzþ 1

2 ðb01 �
ffiffiffi
2

p
b12Þ�zz ; ð6:45Þ

b020 ¼ b20 þ ðb20 �
ffiffiffi
3

p
b31Þlþ 1

4

ffiffiffi
2

p
ðb00 � b22Þ��� � 1

2

ffiffiffi
3

p
b40�

� 1
2

ffiffiffi
3

p
b30zþ 1

2 ð
ffiffiffi
2

p
b10 � b21Þ�zz ; ð6:46Þ

writing � = �+ + i��. These linear equations may be solved
explicitly for the desired transformation coefficients �, l,
and z. The solution appears much simpler if the object is
nearly round, such that bpq5b00 for p 6¼ q. In this case the
transformation parameters are, to leading order,

� ¼ �2
ffiffiffi
2

p
b02

b00 � b22
; ð6:47Þ

z ¼ �2b01
b00 � b11

; ð6:48Þ

l ¼ �b11
b00 � 2b22

: ð6:49Þ

From these equations it is clear that b20, b10, and b11 are the
primary carriers of information on shape, centroid, and size,
respectively. Since the shape component �+ is (� + ���)/2, its
uncertainty is, to leading order,

�2� � Var ð�þÞ ¼ 2 Var ðb20Þ þ Cov ðb20b02Þ þ Var ðb02Þ½ �
ðb00 � b22Þ2

ð6:50Þ

¼ 4n�2

b200
1� b22

b00

� 	�2

; ð6:51Þ

) �� ¼ 2

�
1� b22

b00

� 	�1

: ð6:52Þ

Here we have made use of equation (6.17) for the covariance
matrix in the case of white noise, and equation (6.18) for the
definition of the significance �. We see that the Laguerre
expansion easily reproduces the earlier result in equation
(3.24), with the a4 parameter in that equation being simply
the strength of the b22 coefficient.

With a more tedious procedure we may derive the solu-
tion for � to second order in bpq/b00. We take bpp5b00 for
p > 0 this time in order to simplify the expression

� � � 2
ffiffiffi
2

p b02
b00 � b22

� 2
ffiffiffi
3

p b20b04

b200

þ 2b201 � 2
ffiffiffi
6

p
b10b03 � 2

ffiffiffi
2

p
b01b12

b200

� 2
ffiffiffi
6

p b11b31

b200
: ð6:53Þ

The terms in the first line arise from solving for � = 0; the
terms in the second and third lines arise when simultane-
ously solving the centroid and size constraints, respectively.

From these terms, one can derive the O(��4) terms in the
shape uncertainty if desired. But more importantly, this
expression uncovers a very significant source of bias in
shape measurements: the presence of the bpq in second order
means that it is possible for noise to be rectified in the deter-
mination of e. If the noise is anisotropic—as is the case after
correction for an anisotropic PSF—then e will be biased.
We will explore this in more detail in x 8.

6.3.4. Fourier Transforms and Convolution

The observed galaxy intensity Io(x) is the convolution of
the image-plane intensity Ii(x) and the stellar PSF I?(x):

IoðxÞ ¼ I iðxÞ�I?ðxÞ ¼
Z

d2x0 I iðx0ÞI?ðx� x0Þ : ð6:54Þ

The postseeing, preseeing, and stellar images can be
expressed as vectors bo, bi, and b?, respectively, of coeffi-
cients over our eigenfunction sets  �opq, 

�i
pq, and  

�?
pq. The con-

volution can then be expressed as a matrix relation

bo ¼ Cðb?Þbi ; ð6:55Þ
bopoqo ¼

X
Cpiqip?q?

poqo bipiqi b
?
p?q? : ð6:56Þ

We will effect the deconvolution by inverting a truncated
version of the matrix C. Its coefficients are determined by
the relation

 �ipiqi� 
�?
p?q? ¼

X
C

piqip?q?
poqo  �opoqo : ð6:57Þ

The convolution is more easily expressed in k-space. With
the usual definitions (denoted as ‘‘ system 3 ’’ by Bracewell
1978),

~IIðkÞ ¼ 1

2�

Z
d2x IðxÞe�ik xx ; ð6:58Þ

IðxÞ ¼ 1

2�

Z
d2k ~IIðkÞeik x x ;

the convolution becomes a multiplication, and the matrix
coefficients in equation (6.57) can also be expressed as

2� ~  �ipiqi
~  �?p?q? ¼

X
Cpiqip?q?

poqo
~  �opoqo : ð6:59Þ

We now make use of another remarkable property of the
Laguerre-exponential eigenfunctions, which is that they are
their own Fourier transforms. First we note that  �00 is a two-
dimensional Gaussian, and the transform (eq. [6.58]) is
easily executed to yield a newGaussian,

~  �00 ¼
1ffiffiffi
�

p e�k2�2=2 : ð6:60Þ

The functional form of ~  00(k) matches that of  00(x), except
that we must send �! 1/�. Next we can use the definition
of the raising operators (eq. [6.22]) to note that

g
a
�y
p  a
�y
p  ¼ �i

2
�ðkx þ ikyÞ �

1

�

@

@kx
þ i

@

@ky

� 	� �
~  � ~aa�yp ~  :

ð6:61Þ

Thus, the k-space raising operator has the same form as the
x-space raising operator, save the �! 1/� transformation
and an additional factor of �i. The same is true of a

y
q. Since

 00 and the raising operators are each unchanged by the
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Fourier transform, it must be true that all the  pq are their
own Fourier transforms as well, with appropriate scaling
factors of i and �. More precisely, we have

~  �pqðk; �Þ ¼
ð�iÞmffiffiffi

�
p

ffiffiffiffi
q!

p!

s
k�ð Þmeim�e�k2�2=2L

ðmÞ
q ðk2�2Þ

ðp � qÞ ð6:62Þ

(cf. eq. [6.8]). So the problem of convolving two of our
eigenfunctions is reduced to the simpler problem of multi-
plying the same two eigenfunctions. We may reach several
conclusions immediately:

1. The convolution of  �iNimi
with  �?N?m?

will produce an
observed image with azimuthal order mo = mi + m?. Fur-
thermore, the multipole phase of the observed image must
be the sum of the phases for the original and PSF images’
coefficients.
2. If we choose the scale size �o for the observed image

eigenfunctions such that

�2o ¼ �2i þ �2? ; ð6:63Þ

then the convolution contains components  �oNomo
only for

No 
 Ni + N?. Recall also that we must have No � mo =
mi + m?, so it must be true that  �ipiq� �?p?q /  �oðpiþp?Þq for
q = 0.

In Appendix B we give a recursion relation to calculate
any of the elements Cpiqip?q?

poqo that we need to calculate the
convolution and, thus, the deconvolution.

6.3.5. Deconvolution, Noise Amplification, and Truncation

With the formulae for the convolution matrix C in hand,
we can investigate the nature of the trade-off between the
fidelity of the deconvolution—i.e., the extent to which
effects of the PSF upon the shape are removed—and the
noise level of the deconvolution. We must truncate the b-
vectors at some finite order N to implement the deconvolu-
tion; higher N will remove more of the PSF effects but also
increase the noise level. We can illustrate this phenomenon
by considering the simplest case of convolution by a unit
Gaussian PSF, b?pq ¼ 2

ffiffiffi
�

p
�p0�q0. Since the PSF has only

m? = 0 terms, we will have mo = mi, so the convolution
matrix is block diagonal, and we may deconvolve each m
independently. If we choose �2o = �2i + �2?, then the convo-
lution matrix coefficients are zero for No > Ni, and hence
each block matrix is also upper triangular. This makes the
inversion easy. Using the results of Appendix B, defining a
deconvolution parameter D = �2i /�

2
o = 1��2?/�2o, and using

equation (6.17) for the covariance of the measured
moments, the deconvolved value of bi00 and its variance are

bi00 ¼
X1
p¼0

1�D

D

� 	p

ð�1Þpbopp ; ð6:64Þ

Var ðbi00Þ ¼ n�2o
X1
p¼0

1�D

D

� 	2p

¼ n�2i
D2

2D� 1
D >

1

2

� 	
:

ð6:65Þ

In practice, we could not measure the bopp to infinite p and we
must truncate the sum (eq. [6.64]) at some finite p. The more
terms we include, the more accurately we describe the
deconvolved bi00, but each additional term in the deconvolu-

tion adds more noise. For D > 1
2, the added noise in succes-

sive terms drops as p increases, and we could in principle do
a complete deconvolution of bi00 with finite variance. For
D 
 1

2, however, the noise in the deconvolved moment
diverges for p ! l, and we are forced to truncate the
deconvolution matrix.

For ellipticity measurements, we are primarily interested
in the bi20 moment. For this case of a Gaussian PSF, the gen-
eral bim0 moment deconvolution is

bim0 ¼
X1
q¼0

1

Dm=2

1�D

D

� 	q

ð�1Þq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
qþm

m

	s
boðqþmÞq ð6:66Þ

) Var ðbim0Þ ¼
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Dm
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q¼0

1�D

D

� 	2q� qþm
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ð6:67Þ

¼ n�2i D
D

2D� 1

� 	mþ1

D >
1

2

� 	
: ð6:68Þ

We note that these moments also demonstrate the proper-
ties that they are noisier than the observed moments, and
infinitely so ifD < 1

2 and the deconvolution is not truncated.
The noise increases asm increases, as we would expect, since
higher spatial frequencies must be recovered.

For a purely Gaussian PSF with D > 1
2, it is possible to

complete the deconvolution with finite noise. A real PSF
must have components beyond b?00, since the transfer func-
tion vanishes above a critical k-value. When we invert the
convolution matrix for such a PSF we will find that the var-
iance series akin to equation (6.65) would diverge for any
D < 1. The best truncation value for the matrix will depend
upon the form of the PSF and the accuracy to which we
demand correction of PSF effects. We will examine some
specific cases in Jarvis et al. (2002).

6.3.6. Analytic or Kernel Correction for PSF Bias?

There are two general means of eliminating the shape bias
induced by the PSF. One alternative is to measure the an-
isotropy of the PSF carefully and apply analytic corrections
to the measured objects, as occurs naturally within the
deconvolution framework described in the preceding para-
graphs. The KSB formalism contains an approximate ana-
lytic correction. The other method is to convolve the image
with a spatially varying kernel that removes the anisotropy
from the PSF, as first demonstrated by FT97 and further
advocated in K00. Removal of the PSF bias is the most crit-
ical task for a weak-lensing method: the PSF dilution is only
a calibration error or signal modulation, but the PSF bias
introduces a first-order false signal to the lensing analysis.

Ideally, analytic correction is preferred. The convolution
kernel will always degrade the image resolution to some
extent. Many PSFs cannot be ‘‘ rounded out ’’ unless the
kernel is of size comparable to the PSF itself (K00). Further-
more, the convolution will perturb the noise spectrum of the
image, complicating error estimation. The kernel method,
however, can be faster for simple kernels than an involved
analytic correction, especially if eliminating the bias is more
important than calibrating the dilution for the task at hand.

The kernel method may offer peace of mind. The
demands for rejection of the PSF bias are very stringent:
PSF ellipticities of 10% are not uncommon, yet state-of-the-
art lensing surveys require systematic errors below 0.1%, so
the method we choose must reduce the PSF bias by over 2
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orders of magnitude. If the kernel method can make the
PSF truly round, then symmetry principles preclude any
artificial coherent ellipticity. We flesh out this statement in
x 7. We may have more trust in the symmetry principle than
we do in an analytic correction, especially when finite sam-
pling is taken into account. Note, however, that the symme-
try principle requires that the noise power spectrum also be
isotropic; x 8 below demonstrates how anisotropic noise can
bias shape measurements through centroid bias.

We therefore will describe an alternative procedure: elimi-
nate the bias with a kernel correction; measure the shapes,
either isotropizing the noise or making a correction for cent-
roid bias; then correct them for dilution with a heuristic for-
mula such as equation (6.1). In x 7, we describe a rounding-
kernel methodology, and in Appendix C we derive a higher
order version of the dilution correction. These methods
were used by Fischer et al. (2000), Smith et al. (2001), and
the forthcoming CTIO lens survey (Jarvis et al. 2002).

6.4. Pixelated Data

Real astronomical data are integrated into pixels and
sampled at finite intervals, and the continuum limit that we
have assumed in our analysis is not strictly valid. A formal
description of the process is that the PSF is altered by con-
volution with the pixel response function (PRF) to produce
the effective PSF (ePSF), which is then sampled at the pixel
pitch a—see Lauer (1999) or Bernstein (2002) for further
elaboration. If the pixel pitch is coarser than the Nyquist
interval of the PSF (�/2D for a diffraction-limited image),
then there is aliasing and we cannot unambiguously recon-
struct the original image or the true bpq coefficients.

In the case where the pixel size a is small compared with
the PSF size, the bpq may be estimated by converting the
integral equation (6.16) into a sum over pixels. But the for-
mally correct procedure is to fit the vector of sampled pixel
fluxes Ii with a model galaxy with free bopq. This is a standard
minimization problem for the v2 parameter,


2 ¼
X
i

½Ii �
X

pq
bopq 

�
pqðxiÞ�2

Var ðIiÞ
: ð6:69Þ

Since the model is linear, the solution for bopq and its co-
variance matrix has a closed form, but of course the number
of bopq coefficients allowed in the model must be less than the
number of pixels being fitted. With the best-fit coefficients
and their covariance matrix in hand, we may proceed with
the methods outlined above. It is the ePSF rather than the
PSF that has convolved the source image, but since we in
fact measure the ePSF for stars, the deconvolution proce-
dures are unchanged. Dithered exposures can be handled by
extending the pixel sum over multiple exposures, as long as
the PSF is unchanging. Poorly sampled images will manifest
the aliasing as strong degeneracies in the solution for the
bpq.

A potential time-saving procedure would be to fit the
pixel data to a Laguerre expansion that is already convolved
with the local PSF, minimizing


2 ¼
X
i

�
Ii �

X
poqo

 �poqoðxiÞ
X

piqi
Cpiq

i

poqo
bipiqi

�2
Var ðIiÞ

: ð6:70Þ

Here C is the Laguerre-coefficient convolution matrix for
the local PSF. The intrinsic coefficients bipq are the

unknowns in this linear fit. This is very reminiscent of the
method of Kuijken (1999), except that our model for the
intrinsic galaxy shape may depart from circular symmetry,
and our Laguerre formalism will allow the fit to proceed as
a matrix solution, with matrices rapidly built by recursion.
Aside from its suitably to poorly sampled data, this direct
fitting approach has two further advantages over the decon-
volution matrix method of the previous section. First, when
the noise is not flat and equation (6.17) does not apply, the
direct fitting method more directly produces the full cova-
riance matrix for the bi vector. Second, the direct fit may
make use of images that are partially contaminated by inva-
lid pixels, e.g., cosmic rays, since they may be excluded from
the v2 sum. It is this method that we consider most promis-
ing for real data.

7. ROUNDING-KERNEL METHODS

In this section, we develop a method for producing a con-
volution kernel that symmetrizes the PSF to some desired
degree. As discussed above, this is a potentially efficient
means of reducing or eliminating PSF bias from the shear
determination. By taking advantage of the Laguerre decom-
position, the derivation and application of the spatially
dependent kernel can be efficiently implemented.

7.1. The Target Transfer Function

As discussed in x 6.2, the effect of seeing is to convolve the
initial image, Ii, with a PSF transfer function T to produce
an observed image, Io. One could theoretically remove all
the effects of seeing by convolving the observed image with a
kernel K whose Fourier transform ~KK = 1/~TT to produce a
final image, I f.

However, as discussed above, this is impossible to carry
out in practice, because ~TT(k) = 0 for all k above some crit-
ical value. We can avoid this problem by ignoring the high-
order moments of Io and I f. This is straightforward when
one does an eigenfunction expansion of the images using the
eigenfunctions introduced in x 6.3, since the expansion can
be truncated at some value of N = p + q. This captures
most of the real information about the PSF without intro-
ducing the noise from the higher order moments. After the
convolution, we then have a target transfer function, T 0,
which is not exactly a delta function, but which can be made
to match a delta function up to some order N. Most gener-
ally we have

Io ¼ T�I i ; ð7:1Þ
T ¼

X
pq

b?pq 
�
pqðr; 
Þ ; ð7:2Þ

I f ¼ T 0�I i ¼ K�T�Io ; ð7:3Þ
T 0 ¼

X
pq

b?0pq 
�
pqðr; 
Þ : ð7:4Þ

For the ideal case of T 0 = �(x),

b?0pq ¼ ð�1Þp=
ffiffiffi
�

p� �
�pq : ð7:5Þ

Thus, if T 0 satisfies equation (7.5) up to some cutoff orderN,
I f will be approximately identical to Ii up to the same order.
If we can find a kernel K that produces this target transfer
function, T 0, we will be able to remove all the effects of see-
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ing as well as possible given our ignorance of the high-order
terms.

How stringently do we need to satisfy equation (7.5)? Less
strict requirements on T 0 make it easier to find an appropri-
ate, compact kernel. Our present goal is to create a transfer
function T 0 that does not produce any shear bias. If the orig-
inal scene Ii is unlensed, and we represent the shear measure-
ment process as some operator �(I ), then the isotropy of the
universe guarantees that �(Ii) = 0 (we consider � as a com-
plex number �+ + i��). Our demand on the transfer func-
tion is that

�ðI f Þ ¼ �ðT 0�I iÞ ¼ 0 : ð7:6Þ

Most generally, the results of the shear measurement pro-
cess can be expanded as a power series in the coefficients of
the T 0 PSF:

�ðT 0�I iÞ ¼
X
p1q1

ap1q1b
?0
p1q1

þ
X
p1q1 ;
p2q2

ap1q1;p2q2b
?0
p1q1

b?0p2q2 þ � � � ;

ð7:7Þ

where the ai are some coefficients that depend upon the mea-
surement process, the image characteristics, and the size of
the PSF. We now examine the consequence of rotating the
image and the PSF by some angle 	. The measured shear
and the T 0 coefficients behave as

�ðI f Þ ! e2i	�ðI f Þ; b?0pq ! eðp�qÞi	b?0pq : ð7:8Þ

The individual galaxies in the original scene Ii are not invari-
ant under rotation, but any statistical measure of their col-
lective properties must be invariant under rotation, i.e., Ii is
invariant under rotation in the same sense that the universe
is isotropic. Therefore the ai coefficients of equation (7.7)
are unaffected by the rotation, and to satisfy the conditions
of equation (7.8), we must have

ap1q1 ¼ 0 for p1 � q1 6¼ 2 ;

ap1q1;p2q2 ¼ 0 for p1 � q1 þ p2 � q2 6¼ 2 ;

..

.
ð7:9Þ

Thus, only PSF terms withm = p � q = 2 can cause a shear
bias, to first order. The primary goal of our kernel, there-
fore, will be to set

b?0pq ¼ 0 ðm ¼ p� q ¼ 2Þ : ð7:10Þ

With this condition satisfied, shear bias can only be of order
(b?pq)

2, where p 6¼ q. Higher order a’s are nonzero only if
m1 + m2 + _ = 2. Many of these elements are zero as well;
for example, by considering the invariance of �(I ) under
infinitesimal translation, one can demonstrate that a10,21
vanishes, but a10,10 must exist. Satisfying equation (7.10)
does not, therefore, guarantee the elimination of shear bias
to all orders.

For absolute assurance that a shear bias is absent, we can
set

b?0pq ¼ 0 p� q 6¼ 0 ðmod 4Þ½ � ; ð7:11Þ

i.e., ensure that the PSF has fourfold symmetry. In this case
the condition

P
mi = 2 can never be satisfied for nonvan-

ishing coefficients of T 0. Note that it would also suffice to
enforce any m-fold rotational symmetry on the PSF beyond
m = 2, e.g., the diffraction pattern of a triangular secondary
support structure cannot by itself cause shear bias.

In practice we produce a kernelK that enforces the condi-
tion in equation (7.10) up to some order N. We can set
b?010 = 0 by appropriate choice of PSF center. The remaining
shear biases must be of order (b21/b00)

2, b41b01/b
2
00, etc.,

which are generally quite small.

7.2. Components of the Kernel

Since we are going to convolve the kernel with a pixelated
image, we must construct the kernel as a two-dimensional
array instead of a continuous function. The simplest kernel
is the identity kernel, composed of an array of 0’s with a sin-
gle 1 in the middle. This kernel conserves flux; we want a
flux-conserving kernel, so we only consider kernels that are
the identity kernel plus a kernel for which the elements sum
to zero.

Next note that taking the derivative of an image is usually
approximated by a discrete difference. For example,

@I

@x
¼ Iðxþ dxÞ � Iðx� dxÞ

2 dx
: ð7:12Þ

Another way to write this equation is as a convolution:

@I

@x
¼

0 0 0

� 1
2 0 1

2

0 0 0

0B@
1CA�I : ð7:13Þ

Similarly,

@I

@y
¼

0 1
2 0

0 0 0

0 � 1
2 0

0B@
1CA�I : ð7:14Þ

In fact, all partial derivatives of any order in x and y can
be represented as a convolution by a zero-sum kernel. First-
and second-order derivatives can be effected using 3 � 3
kernels; third- and fourth-order derivatives require 5 � 5
kernels, and so on. One can therefore think of the kernel as
being made up of a sum of these derivatives (@/@x)i(@/@y)j

including, of course, the identity kernel, (@/@x)0(@/@y)0.
The eigenfunction expansion of our images actually sug-

gests a slightly different set of components for the kernel.
Namely,

K ¼
X
ij

kijDij ; ð7:15Þ
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ð7:16Þ

¼ �� iþjð Þða�q � a�yp Þiða�p � a�yq Þj : ð7:17Þ

These components make it easy to use the raising and
lowering operators to determine how a given kernel will act
on an image. Note, however, that theDij are complex, which
means that to end up with a real image after the convolu-
tion, we require that kji = �kkij.
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The 3 � 3 kernel components are

D10 ¼
0 1

2 i 0

� 1
2 0 1

2

0 � 1
2 i 0

0B@
1CA ; ð7:18Þ

D01 ¼ D10 ; ð7:19Þ

D20 ¼
� 1

2 i �1 1
2 i

1 0 1
1
2 i �1 � 1

2 i

0B@
1CA ; ð7:20Þ

D02 ¼ D20 ; ð7:21Þ

D11 ¼
0 1 0

1 �4 1

0 1 0

0B@
1CA : ð7:22Þ

We note at this point that the FT97 method is equivalent
to use of just the D20 and D02 kernel elements. The 5 � 5
and larger kernel components can be found by convolving
the 3 � 3 components. For instance, D30 = D10 � D20, and
D41 = D11 � D30.

7.3. Calculating the Kernel

7.3.1. The Kernel for Infinitesimal Pixels

The kernels given by equations (7.18)–(7.22) are only
equal to the continuous derivatives (eq. [7.16]) to lowest
order in 1/�?. Typically, the PSF is only a few pixels in size,
so this is not that good of an approximation. However, it is
a good place to start, as most of the technique will apply to
the case of finite pixels.

Combining equation (7.15) with the definition of T 0 (eq.
[7.4]),

b?0 ¼
X
ij

kijDijb
? : ð7:23Þ

The operator matrix Dij, in the limit of infinitesimal pix-
els, is easily calculated using equations (7.17) and (6.22),
and there is a fast recursion:

D00b
? ¼ b? ;

Dðiþ1Þjb
? ¼ 1

�?
ða�?q � a�

?y
p ÞðDijb

?Þ ;

Diðjþ1Þb
? ¼ 1

�?
ða�?p � a�

?y
q ÞðDijb

?Þ : ð7:24Þ

Since b? is measured and the Dij are fixed matrices, we have
a matrix equation for the unknown kernel coefficients kij,
given the chosen constraints on b?0 (e.g., eq. [7.10]):

Mk ¼ b?0 ; ð7:25Þ

where k = {kij} and the ij row of M is given by (Dijb
?)T.

Thus, given b? and b?0, one calculates M using
equation (7.24) and then simply solves equation (7.25) for k.

The problem with this method is that b?0 will not usually
be completely specified. Neither equation (7.10) nor equa-
tion (7.11) fully constrains b?0. The easiest way to deal with
this is to set kpq = 0 for each unspecified b?0pq. Then the kernel
will be as simple as possible while still satisfying all the
requirements for b?0. A more sophisticated technique for
dealing with this issue is described below in x 7.4.

7.3.2. The Kernel with Pixelization

The same general technique applies to the case of finite
pixels in that we want to solve equation (7.25) for k. The
only difference is the calculation of Dijb

?. In this case, we
must use equations (7.18)–(7.22) rather than equation
(7.17).

Consider the version ofD10 given in equation (7.18):

D10b
?ðx; yÞ ¼ 1

2 b?ðxþ 1; yÞ � b?ðx� 1; yÞ½ �
þ 1

2 i b
?ðx; yþ 1Þ � b?ðx; y� 1Þ½ � ð7:26Þ

¼ 1
2 Tz1b

? � T�z1b
?ð Þ þ 1

2 i Tz2b
? � T�z2b

?ð Þ ;
ð7:27Þ

where z1 = 1/�, z2 = i/�, and Tz is defined in xA1.
Calculations for the otherDij are similar.

7.3.3. The Kernel in a Distorted Frame of Reference

Most telescopes, especially those with large fields of view,
have fairly significant distortion. To deal with this correctly,
the shape measurements should be made in the undistorted
world coordinates rather than the chip coordinates. The
kernel’s pixel grid, however, is still is in the distorted coordi-
nate system. The calculation of Dijb

? must therefore take
into account the two different coordinate systems.

If the world coordinates are (u, v) and the pixel coordi-
nates are (x, y) then the correct values for z1 and z2 are

z1 ¼
1

�

@u

@x
þ i

@v

@x

� 	
; z2 ¼

1

�

@u

@y
þ i

@v

@y

� 	
: ð7:28Þ

7.4. Minimizing the Noise from the Kernel Convolution

The motivation for having a compact kernel is to mini-
mize the noise added by the convolution. A large kernel will
use data with significant noise but little signal, adding to the
noise in the convolved image.

Therefore, let us consider the noise in the convolved
image. DefineK(m, n) to be the total convolution mask:

Kðm; nÞ ¼
X
ij

kijDijðm; nÞ ; ð7:29Þ

I f ðx; yÞ ¼
X
mn

Kðm; nÞIoðxþm; yþ nÞ : ð7:30Þ

If the noise in the image is dominated by sky noise, then
we can define n2 to be the variance in each pixel of the
observed image. The noise in each pixel of the convolved
image is

n2f ¼
X
mn

Kðm; nÞ2n2 ¼ n2
X
mn

�X
ij

kijDijðm; nÞ
�2
: ð7:31Þ

In x 7.3.1, we set some kernel coefficients to zero to
account for the unspecified components of b?0. Really, each
of these coefficients is arbitrary, so the solution to equation
(7.25) will be

k ¼ k0 þ AY ; ð7:32Þ

where k0 is a specific solution,A is a matrix, andY is an arbi-
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trary vector. The dimension of Y is equal to the number of
unspecified components of b?0.

We can then find the particularY that minimizes the noise
added to the image by the convolution. For this derivation
D(m, n) is the vector of each Dij(m, n). So, K(m, n) =
D(m, n)k:

0 ¼
@n2f
@Y

ð7:33Þ

¼ @

@Y

�
n2
X
mn

Dðm; nÞk½ �2
�

¼ 2n2
X
mn

Dðm; nÞk½ � Dðm; nÞA½ � ;

0 ¼
X
mn

D m; nð Þ k0 þ AYð Þ D m; nð ÞA½ �f g ; ð7:34Þ

X
mn

Dðm; nÞA½ � Dðm; nÞAY½ �

¼ �
X
mn

Dðm; nÞA½ � Dðm; nÞk0½ � : ð7:35Þ

This is now a matrix equation that can be solved for Y,
which then gives the solution for k that minimizes the noise.

It turns out that if this method is implemented exactly as
described, one ends up with a fairly large kernel, which is
essentially a smoothing filter. While this solution will work,
it is not exactly what we want from the kernel. We would
rather have a smaller kernel that minimally changes the
image. So, rather than minimize the noise in I f, we minimize
the noise in I f � Io. In other words, we leave out the D00

term in the vector products of equation (7.35). This results
in fairly compact kernels that vary smoothly across the
image.

7.4.1. Additional Kernel Components

There are nine free parameters in a general real 3 � 3 ker-
nel. Equations (7.18)–(7.22) define five kernels. The identity
kernel is another. Thus, there are three more independent
3 � 3 kernels we could construct. Two of these can be made
to approximate discrete versions of the derivatives D10 and
D01. The other can be made to approximate a discrete ver-
sion ofD11. These alternate versions are

AltD10 ¼

1
4 ð�1þ iÞ 0 1

4 ð1þ iÞ
0 0 0

1
4 ð�1� iÞ 0 1

4 ð1� iÞ

0B@
1CA ; ð7:36Þ

AltD01 ¼ AltD10 ; ð7:37Þ

AltD11 ¼

1
2 0 1

2

0 �2 0
1
2 0 1

2

0B@
1CA : ð7:38Þ

We can construct alternate higher order kernels in the
same way as we constructed the regular higher order
kernels, namely, Alt D30 = Alt D10 � D20, Alt D41 =
Alt D11 � D30, etc.

These extra kernel components are useful if one is mini-
mizing the noise as described above, since they add extra
degrees of freedom for the minimization and therefore can
result in a smaller, less noisy kernel.

7.5. Interpolating Across an Image

The above discussion explains how to find the appropri-
ate kernel given a particular PSF. However, in a real image,
the PSF varies across the chip. Thus, the kernel will also
vary across the chip.

There are two potential ways to deal with this. One can
find the appropriate kernel for each star in the image. Then
fit the kernel components kij as functions of (x, y). Alterna-
tively, one can fit the coefficients b?pq of the measured PSF
decomposition as functions of (x, y) and then solve for the
appropriate kernel at each point.

We choose the first method in our analysis for two rea-
sons. First, the derived kernel can be directly applied to each
star to make sure that it really does make the star round.
Occasionally, a star will have significant high-order compo-
nents due to crowding or an uncorrected cosmic ray. When
this happens, the derivation above fails, and we reject this
kernel from the fit. It is a little cleaner to recognize these out-
liers with kernel interpolation than with PSF interpolation.

The second reason to prefer fitting the kernel rather than
the PSF is computational efficiency. The appropriate kernel
must be calculated at each pixel. It is significantly faster to
evaluate a function than to solve a matrix equation. On a
2K � 4K chip, there are 8 million kernel evaluations. Both
methods gain significantly by using a locally linear approxi-
mation to the spatial variation, but there is still a significant
difference in computation for the twomethods.

The kernel scheme described here allows a substantial
speed gain over a typical convolution method. Fourier
methods are fastest for large convolutions, but they are not
practical for spatially varying kernels. In our scheme, the
output image can be written as

I f ¼
X
ij

kijðx; yÞ � ðDijI
oÞ : ð7:39Þ

Instead of calculating the kernel at each output pixel, we
can instead produce the images DijI

o (which are constant-
kernel convolutions) and then accumulate sums of these
images with spatially varying weights kij(x, y). More impor-
tantly, the DijI

o can be produced by recursive application of
the 3 � 3 kernels. Hence, convolution by a 7 � 7 kernel can,
for example, be reduced to three successive applications of
3 � 3 kernels.

Note that interpolation of the PSF elements across the
image is required for the analytic deconvolution described
in x 6.3.5.

7.6. Dilution Correction

Once a kernel has been applied to the image to symme-
trize the PSF, the measured galaxy ellipticities need to be
scaled by some resolution factor R to account for the PSF
dilution. Appendix C describes the scheme we use for esti-
mating R, which closely resembles the KSB ‘‘ smear polariz-
ability ’’ derivation.

8. CENTROID AND SELECTION BIASES

Even if the asymmetries of the PSF have been perfectly
removed by a deconvolution or other method, there are two
effects that can cause the estimate of the mean shape to be
biased in the direction of the original PSF orientation. The
first is a selection bias, first noted by K00. The second is a
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measurement bias that arises in the presence of anisotropic
noise or anisotropic PSF, which we term the centroid bias.
K00 discusses an effect whereby the errors in centroid
appear in second order as biases in the ellipticity and con-
cludes that such errors are probably negligible. We show
below that this bias is significant and is, in fact, just one of a
class of noise rectification biases that can occur.

8.1. The Selection Bias

Kaiser’s selection bias operates as follows in the presence
of an anisotropic PSF: if the PSF is elongated in the x-direc-
tion (e?þ > 0), then objects with intrinsic shape e+ < 0 cover
a larger area after PSF convolution than do objects with
intrinsic e+ > 0. On the observed image, therefore, such
objects have both lower surface brightness and lower signifi-
cance �. As most detection algorithms involve some cut in
surface brightness or �, the detected population will be
biased toward e+ > 0. The mean e+ of the population will
be biased, therefore, even if all the detected objects are per-
fectly corrected for the PSF anisotropy. K00 demonstrates
that the bias will scale roughly as e?�2?/�

2
i �

2, where � is the
detected significance.

The selection bias may be defeated by careful definition
of the sample of target galaxies. The key is to produce some
significance statistic ~�� that is independent of the shape of the
object. For an image of flux f covering area A in an image
with white-noise density n, the significance is normally
� / f/(nA)1/2. But the observed area A is shape-dependent
in an anisotropic fashion if the PSF is elliptical. We may
instead define ~�� / f/(n ~AA)1/2, where ~AA is the object’s area on
a version of the image that has been deconvolved, or at least
had the PSF rounded by a convolution kernel, as described
in the previous section. We then define the target sample by
some cutoff limit ~��min to this ‘‘ isotropic ’’ significance.

Detection algorithms generally have some statistic that is
used as a cutoff. For KSB’s IMCAT, this is �. For SExtrac-
tor and FOCAS, this is the number of pixels N above some
isophotal threshold in a filtered version of the image. To
eliminate the selection bias, we make a scatter plot of the
detection statistic, e.g., N, versus the ‘‘ isotropic ’’ signifi-
cance ~��. The selection bias is eliminated if we choose our
cutoff ~��0 sufficiently high that no members of the selected
population approach the cutoff Nmin of the detection statis-
tic. This is illustrated in Figure 7. In this way we ensure that
our selected population is free of any anisotropic selection
criterion that may have been created by the original detec-
tion algorithm.

8.2. Centroid Bias

The centroid bias, discussed in K00, can be qualitatively
explained as follows: An error �x in centroid determination
along the x-axis inflates the measured second moment Ixx by
some amount/�x2, whereas a y-axis error inflates Iyy. If the
centroid errors are isotropic, the mean effect upon e+ is zero.
But if the x centroid errors h�x2i exceed those in y, there is a
net tendency to measure a positive e+. If the PSF has
e?þ > 0, then the PSF—and consequently the mean galaxy
image—is more extended in the x-direction, and hence cent-
roids are less accurate in x than in y. The noise in centroid
estimation therefore pushes the mean measured e in the
direction of e?. The centroid errors scale as ��1, and there-
fore the centroid bias in e scales roughly as e?��2. Faint gal-
axies at low � have a much larger centroid bias than the

bright, high-� stars used as PSF templates, so the effect is
not properly removed by the KSB ‘‘ smear polarizability ’’
corrections.

Deconvolving the image eliminates the PSF anisotropy
but does not eliminate the centroid bias, because the decon-
volved image will have anisotropic noise. There will be more
noise power along kx than ky after deconvolution, and hence
there will still be anisotropic centroid errors and a bias
toward the original e?.

The same situation arises if we apply a convolution kernel
to symmetrize the PSF. This kernel will smooth the image
slightly in the direction perpendicular to the PSF, reducing
the noise level in that direction somewhat. The convolved
image will therefore again have a higher centroid error
along the original PSF axis, as well as a consequent bias in e.

A quantitative understanding of the centroid bias can be
gained from equation (6.53), the second-order expression
for � in the simultaneous solution for shape and centroid
(and possibly size). Let us presume that each bpq has a true
value plus some measurement noise �bpq. The measurement
noise has mean value of zero, since bpq is a linear function
of the intensity. If the object is intrinsically round, centered,
and the weight is properly sized, then we have
b00 = b10 = b20 = 0, and we would indeed measure � = 0.
In the presence of noise, however, the second-order terms in
equation (6.53)—for instance, the term /b210/b

2
00 in the sec-

ond line—may have nonzero mean values. If hb210i =
Var (b10) 6¼ 0, there will be a nonzero h�i.

Note that there are a number of second-order terms in the
� solution, arising not just from the solution for object cen-
ter, but also from the solutions for object size and ellipticity.
We apply the term ‘‘ centroid bias ’’ to all these effects.

Fig. 7.—The scatter plot of isotropic significance ~�� vs. pixels above the
SExtractor thresholds, Npix, indicates the criteria necessary to avoid the
selection bias. To avoid selection bias, we want the galaxy selection to be
entirely on the basis of the shape-independent statistic ~��, and not influenced
by the potentially shape-biased SExtractor threshold Nmin = 5 (some gal-
axies with N < 5 are present as a result of object splitting). We must there-
fore set our �min threshold at �10, which is the lowest value for which the
galaxy population does not extend to N < Nmin. Galaxies in the shaded
region are therefore excluded.
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According to equation (6.17), Var (b10) = 0 in the pres-
ence of a white-noise spectrum P(k) = n (recall that b10 is a
complex number). If we have a PSF of size �? and ellipticity
e? along the x-axis, we may attempt to round out the kernel
by smoothing along the y-axis a little bit. This will produce
a noise power spectrum P0(k) � n(1 � 2e?�2?k2y). The k2y term
in the noise power produces a nonzero value for Var (b10),
and also nonzero covariances between all the other second-
order elements of equation (6.53). The leading term in the
expression for centroid bias takes the form

hei ¼ K
e?

�2
�2?

�2o
� Ke?ð1� RÞ

�2
; ð8:1Þ

where K is a constant, eo is the ellipticity measured on the
convolved image, �o is the size observed on this image, and
R is the resolution factor of x 6. Note that the bias is in the
measured shape, before correction for PSF dilution, which
would add a factor R in the denominator. The value of K
depends upon some higher order moments of the typical
galaxy, and upon the details of the PSF correction and mea-
surement procedure—in some casesK can be negative. Note
also that the functional dependence of the centroid bias is
essentially the same as that for the selection bias, and hence
they are difficult to distinguish.

Figure 8 demonstrates the existence of the centroid bias
in a very simple numerical simulation, in which we convolve
a circular Gaussian source with an elliptical Gaussian
weight, then measure the ellipticity and centroid with a
fixed-size circular Gaussian weight. It is clear that the mean
measured ellipticity depends upon the significance (i.e., S/N
level) as described by equation (8.1) with K = �2. If the
weight size is iterated to maximize significance, the bias
increases to K � �6. For other measurement algorithms or
galaxy shapes, K will differ, so we must determine K empiri-
cally.

The bias in equation (8.1) will be equal to the shape-noise
uncertainty in the mean ofN galaxies when

Ke?ð1� RÞ
�2

� 0:3Rffiffiffiffiffi
N

p ) N � 0:3

Ke?
R

1� R

� 	2

�4 : ð8:2Þ

For typical PSF ellipticities and K-values, with galaxies
somewhat resolved (R � 0.5) and detected at � = 10, we
find the bias equal to the shape noise when N � 104. The
effect clearly cannot be ignored in present-day surveys. If
the PSF ellipticity varies, then the bias will induce false
power into the distortion power spectrum, with a total fluc-
tuation power of �h(e?)2iK2/�4, for R � 0.5. If we take the
rms value of e? to be about 3%, take |K | � 5, and � = 8, we
see that the bias power is about 5% of the typical cosmic sig-
nal, for which the rms distortion is �1%. In unfavorable
parts of the power spectrum, the ratio of PSF bias power to
cosmic signal will be worse; hence, the bias cannot be
ignored for cosmic shear studies that aim to move beyond
mere detection to true precision measurements.

There are several possible strategies for defeating the
centroid bias. The simplest is to find K empirically and then
apply an appropriate bias correction to each object using
equation (8.1). Another approach, useful if one has applied
a PSF-rounding kernel to the image, is to add noise back to
the image to recreate the original isotropic noise spectrum.
If both the PSF and the noise spectrum are isotropic, there
is no way the mean shape can be biased. Unfortunately, cre-
ating the appropriate noise field to add to the image is com-

putationally expensive for all but the simplest convolution
kernels.

Symmetrizing the noise is easier if we have used the
Laguerre decomposition method to deconvolve the images.
If we have properly propagated the original covariance
matrix for the bpq, then we know Var (b10)—and all the
other relevant covariances—in the deconvolved image. We
can add noise to the deconvolved bpq elements in order to
zero out the asymmetric elements of the covariance matrix.

9. PROCEDURES FOR SHAPE MEASUREMENT
WITH PSF CORRECTION

We now have all the necessary tools for a procedure for
measuring shapes and shear in the presence of a PSF convo-
lution. Figure 9 is a flowchart for this procedure, and we
elaborate on each step below. First note that there are two
branch points. The first is the decision whether to measure
the shapes on a summed image or to measure PSF-corrected
moment information from each exposure and combine the
moments. The former is easier if all exposures cover the
same sky area, but the latter is recommended whenever the
coverage is interlaced on the sky. The second branch point
is deciding whether to use an analytic or a kernel correction
for PSF bias. The remainder of this section delineates the
overall data reduction procedure for weak-lensing measure-
ments.

9.1. Exposure Processing

The steps listed in this section must be performed on each
exposure. For mosaic detectors, these steps should be done
separately for each channel of the detector if the PSF may
change abruptly at the boundaries between detectors.

Fig. 8.—Effect of centroid bias, demonstrated by a simple numerical test
in which a circular Gaussian in measured in the presence of an elliptical
PSF and white noise. High-significance detections are observed at the cor-
rect ellipticity and would yield e = 0 when corrected for the PSF ellipticity.
But the measured ellipticity drops as the significance � decreases. The test
results are well described by eq. (8.1) with K = �2, which is plotted as the
solid [dashed] line for the tests with e?(1 � R) = 0.2 [0.1].
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1. Bias subtraction and flat-fielding.—These can be done
in the usual fashion. Note that field distortion leads to sig-
nificant variation in pixel area in many CCD cameras. If the
flat-field image is, as usual, obtained by exposing a source of
uniform brightness, then the flattened pixel data are a prop-
erly calibrated map of the surface brightness of the sky
rather than a map of the flux from the sky. This is actually

what we want, though it means that simple aperture
photometry will lead to incorrect flux estimates.
2. Object detection.—Available detection packages such

as FOCAS (Valdes 1982), SExtractor (Bertin & Arnouts
1996), and ProFit (P. Fischer 2001, private communication)
can be used to identify all objects on the exposure with sig-
nificance � & 3 and produce a catalog with preliminary
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Fig. 9.—Illustration of the data flow from raw images through a final lensing distortion map or statistic, with each step described in x 9. Shaded regions rep-
resent steps that may not be used in all circumstances. Implementation details will be presented in Jarvis et al. (2002).
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position, size, and ellipticity estimation. Each of these pack-
ages also produces a useful estimate of total magnitude,
which we will preserve. The choice of object detection pack-
age is not critical, because the objects that will have useful
shape information have sufficiently high significance that
any decent detection algorithm will work.
3. Preliminary measurement.—Our shape-measurement

algorithm is applied to each detected object in order to
obtain an accurate Gaussian-weighted estimate of centroid,
size (i.e., the � that maximizes significance), and shape.
Objects with saturated or bad pixels are flagged at this
point.
4. Registration.—The map from pixel coordinates xp to

the global celestial coordinate grid x is established by fitting
the measured centroid of the bright objects to a collective
catalog (e.g., the average of all individual exposures’ cata-
logs) and/or an astrometric catalog. This step is critical, as
even slight misregistrations will produce a systematic coher-
ent ellipticity in the summed images. The photometric
offsets between images are determined at this point as
well.
5. Image summation (optional).—The exposures can now

be remapped to a common grid and photometric scale and
summed to give a deeper image. If the flattened images are
surface brightness maps as described in step 1, then a simple
interpolation can be done when remapping the images—no
Jacobian flux corrections are needed. Recall the caveats
about image combination in x 4.1. If shapes are to be mea-
sured from the summed image, then we must at this point
reconstruct the preliminary catalog by executing steps 2 and
3 on the summed image.
6. Identification of stars.—As many unsaturated stellar

images as possible should be identified on the image for use
in PSF determination. Stars are typically identified on the
size-magnitude plane. This is a difficult task to execute with-
out excessive human intervention; we want our star-finding
algorithm to be flexible enough to identify stars successfully
in the presence of a spatially varying PSF, but strict enough
to ensure that galaxies are not counted as stars. Failure on
either count will lead to an erroneous estimate of the PSF
size and shape on some part of the exposure, which will lead
to a false feature in the shear field. Our algorithms for star
identification are described in Jarvis (2002). The algorithms
are particularly suited to identifying stars in the presence of
a spatially varying PSF size.
7. PSF measurement.—The shape-measurement algo-

rithms are now applied to the identified stars. The integrals
in equation (6.16) give b? at the location of each star. Note
that the integral can readily be executed in the global coordi-
nate system x, because we know the map from pixel coordi-
nates and because pixel data are already in terms of surface
brightness I. Thus, the effects of image distortion are
removed at this step.
8. PSF interpolation.—With the PSF b? measured at the

locations of the stars, we need to fit a function b?(x) that
describes the PSF at any location on the image. We use a
polynomial to describe the variation of each b?pq across the
image. Note that for complex or undersampled PSFs (such
as those on HST), interpolation of the b?pq components is
much easier and more accurate than interpolating a pixel-
wise representation. In any case, this step is again critical:
the interpolation scheme must be flexible enough to follow
PSF variation, but it must remain well behaved at the image
edges and in regions where PSF stars are sparse. There must

also be some form of outlier rejection for PSF stars that
have cosmic rays or near neighbors contaminating the mea-
surement, but a true excursion of the PSF in some part of
the image must not be rejected.
9. PSF-rounding kernel (optional).—At this point we

derive and apply the kernel to remove the anisotropy from
the PSF, if desired. Our method for doing so is described in
x 7. After the convolution it is necessary to repeat steps 7
and 8 so as to have an updated map of the PSF.

9.2. ObjectMeasurement

We next outline the procedures that yield a shape estimate
for every object in the field.

10. Creation of target catalog.—A list of all targets for
shape measurement must be compiled. If there are fewer
than about five exposures of each object, then a master tar-
get list can be produced by taking the union of the individ-
ual exposure catalogs produced in step 2. One can use a very
low detection threshold on the individual exposures and
then guard against noise detections by demanding coinci-
dence on two or more exposures. If there are more than
about five exposures per object, then it will be necessary to
run a detection algorithm on a summed image in order to
find all the potentially useful target galaxies. The target cat-
alog should include an estimate of the centroid (in global
coordinates) and some observed size so of each object. To
avoid Kaiser’s selection bias (x 8), the criterion for accept-
ance into the catalog must be some shape-independent
statistic.

The following steps are performed for each object in the
target catalog:

11. Measurement of observed moments.—Given the
global coordinates of the object, one can determine all the
exposures on which it should appear. Note that for low-
significance objects, this may include exposures for which
the object was missed in the preliminary detection of step 2.
We then use equation (6.16) to measure the Laguerre expan-
sion bo of the image as observed on each exposure. Once
again the integrals are performed in the global coordinate
system to remove the effects of optical distortions. The inte-
grals require choice of a centroid and a size parameter �o for
the basis functions  �pq. We may use the approximate cent-
roid from the target catalog and set the weight size �o equal
to the typical observed object size so from the target catalog.
The covariance matrix for the bo vector has the diagonal
form given in equation (6.17) for sky-dominated galaxies.
Measurements contaminated by saturated pixels or other
defects may be rejected at this step.
12. Correction for PSF effects.—There are two methods

available here. The first sequence may be used if the round-
ing kernel has been applied to remove the PSF bias. In this
case, if the significance on the individual exposure is &3, we
may proceed as follows:

a) Shape measurement.—The image can be shifted,
dilated, and sheared until it passes the centroid, significance,
and roundness criteria embodied by equations (6.19)–
(6.21). This yields an optimal measure of the observed ellip-
ticity eo. If the object is of significance �0 & 3 on the individ-
ual exposure, then we can solve for centroid and size on
each exposure independently and still ignore the higher
order terms in the uncertainty of equation (4.1).
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b) Centroid bias correction.—Each measured ellipticity
must be corrected for the centroid bias (x 8) using an empiri-
cal value ofK in equation (8.1).
c) Dilution correction.—The PSF is interpolated to the

position of this object to determine the resolution parameter
R (eq. [6.1]) or the higher order version derived in Appendix
C. The correction for dilution to give the image-plane (pre-
seeing) ellipticity is then simply ei = eo/R. The uncertainty
ellipse for e (eq. [3.28]) is therefore also scaled by 1/R. Note
that it is possible to obtain ei > 1 if the noise makes the tar-
get appear smaller than the PSF.
d ) Averaging of exposures.—The ei from the collection of

exposures are averaged using the weighting procedures of
x 4.2. Some form of outlier rejection is necessary to remove
objects contaminated by cosmic rays or other defects.

If we are to perform the PSF bias correction analytically, or
if the significance per exposure is low, then it is best to aver-
age the deconvolved moments rather than deriving ei for
each exposure:

a) Deconvolution of Moments.—The PSF decomposition
b? is interpolated to the position of the object, and the form
of the convolution matrix C(b?) is calculated using the coef-
ficients in Appendix B. This matrix is truncated at some
order p + q 
 N and inverted; the deconvolved (preseeing)
Laguerre decomposition is bi = C�1bo. Since this is a linear
operation on b, the covariance matrix for bi can be propa-
gated from the simple diagonal covariance matrix for bo (eq.
[6.17]). There is a subtlety involved in the choice of weight
scale �o: In x 6.2, we determined that the ideal weight scale
for the deconvolved image is �2i = s2i + �2? = s2o, where si and
so are the sizes of the pre- and postseeing objects and �? is
the size of the PSF. The typical value of so was placed in the
target catalog in step 1. According to equation (6.63), our
deconvolution formulae are simplest if we choose the weight
scale by

�2o ¼ �2i þ �2? ¼ s2o þ �2? : ð9:1Þ

Thus in step 1 we in fact want to use a weight scale some-
what larger than the so that maximizes the significance of
detection.
b) Combination of moments.—From each exposure we

have estimated a bi deconvolved moment vector, with
known covariance matrix. We average these vectors to
obtain a single best estimate of bi. We have a choice of
weights to apply in producing the average; an obvious
choice is to weight each exposure inversely with
Cov (bi20

�bbi20), since b20 carries most of the shape informa-
tion. Again, some form of outlier rejection is necessary at
this step.
c) Symmetrization of noise.—Certain elements of the

propagated covariance matrix for the b-vector must be zero
in order to avoid noise anisotropies that produce centroid
bias (x 8). This can be achieved by selectively adding Gaus-
sian noise to various elements of the combined moment
vector.
d ) Determination of shape.—Given the average of bi from

all exposures, we find the translation and shear that must be
applied to satisfy the centroid and roundness conditions
b10 = b20 = 0. The formulae of Appendix A are used for
this. The covariance matrix for bi can be propagated
through the transformations as well. The uncertainty in the
shape g is then the square root of Var (b20�bb20)/(b200). Note

that we do not want to maximize the significance by dilating
to set b11 = 0. Our optimization criterion is that the shape
have minimal error after our transformations. One could
dilate the image to satisfy this desire, but our choice of �i
should already have us close to the optimum, according to
the arguments of x 6.2.

After either of these procedures, we have a measure of the
deconvolved shape along with its uncertainty.

13. Combination of different wavelengths.—If we have
imaged the field in a variety of filters, then we will have
obtained a shape measurement in each filter. The galaxy’s
shape and moments may depend upon wavelength, so we do
not want to average together images or moments measured
in different filters. We can, however, use the methods of x 4.2
to produce a wavelength-averaged ei that is maximally sensi-
tive to shear. Weighting each filter by the error in its mea-
sured shape ensures that we obtain the most sensitivity from
each galaxy regardless of its color.

After completion of all these steps, we have a catalog of
all objects in the field, specifying their location, magnitude,
optimal shape measurement, and shape uncertainty.

9.3. Determination of Shear

With the shape catalog in hand, we are close to the scien-
tific goals. The remaining step is the following:

14. Generation of shear data.—The target galaxies are
binned by position, etc., into subsets for which we wish to
determine a shear. The shapes (and their uncertainties) may
have to be rotated, e.g., into tangential coordinates about
some mass center, depending upon the shear statistic under
study. The formulae of x 5 take the collection of shapes and
uncertainties and allow us to create an optimal shear esti-
mate, as well as to propagate the uncertainties in shape to
the shear measurement.

10. CONCLUSIONS

We have attempted to produce, as rigorously as possible,
an end-to-endmethodology for measuring gravitational dis-
tortion that has optimally low noise, with calibration and
noise levels derivable entirely from the observations them-
selves. We have succeeded in many, but not all, aspects of
the problem:

1. The measurement of individual galaxy shapes appears
to be optimal and has traceable noise characteristics;
indeed, there even appears to be a straightforward way to
handle undersampled data and retain proper covariance
information for the intrinsic Laguerre coefficients bipq
(x 6.4). The Gaussian weights underlying the Laguerre
decomposition are nearly optimal for sky-dominated expo-
nential-profile galaxies. We may wish to reexamine this
scheme for the case in which the galaxy is brighter than the
sky background.
2. The correction of measured moments for the distort-

ing and diluting effects of the PSF can be effected to arbi-
trary accuracy using the Laguerre decomposition methods.
There will be a trade-off between elimination of systematic
errors—which pushes toward inclusion of higher order
terms in the deconvolution—and the minimization of mea-
surement noise from high-frequency terms. It is not clear
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whether the Laguerre method is optimal with, for example,
Airy PSFs with sharp cutoffs in k-space, but the method
should be better than those yet applied.

3.We have identified methods to work around two sour-
ces of bias that arise from PSF ellipticities even in the pres-
ence of perfect deconvolution.
4. Measurements of galaxy shapes from different expo-

sures or filter bands can be optimally combined with
standard least-squares techniques, since we know the e
uncertainty from each individual exposure.
5. The determination of lensing distortion from the

ensemble of galaxy shapes has a straightforward, optimal,
and calibratable solution in the case of no measurement
noise. In the presence of measurement noise, however, it is
necessary to have some knowledge of the noiseless shape
distribution to get the calibration factor exactly correct.
Our approximations, however, seem to suffice to obtain
accuracies of 5% or better.

A detailed performance comparison of our methods with
other authors’ is beyond the scope of this paper. We can
guess, however, that the reduction of measurement noise
relative to a carefully weighted implementation of KSB will
be slight, perhaps a factor of 1.5. But our methods, like
those of K00 and Refregier (2001), are formally valid for
any reasonable PSF, and hence we expect to have much-
reduced systematic errors. Indeed, it is likely that the biases
of x 8 have not been extensively tested because they were lost
under the larger errors in PSF correction (as also noted by
K00).

Our methods share elements with many previous pro-
posals. An aesthetic difference is that we retain the geomet-
ric meaning of ellipticity by, in effect, using adaptively
shaped weights instead of fixed circular weights. This makes
the ‘‘ shear polarizability ’’ a purely geometric effect. As a
consequence we can examine the P(e) distributions and find
ways to exploit surface brightness, b22, or color information
to separate the spheroid galaxies and weight them more
heavily to reduce the shape noise.

It will be of interest to see how our method compares with
the commutator method of K00. One would hope that the
two independent methods could be applied to the same data
set and yield the same results, bolstering our confidence in
these very difficult measurements.

In a succeeding paper (Jarvis et al. 2002), we will present
some of the implementation details for the analytical meth-
ods here and test the methods on real and simulated data.
Fischer et al. (2000), Smith et al. (2001), and Wittman et al.
(2000) make use of portions of this methodology, so the
systematic-error tests and calibration tests in those papers
already serve as demonstrations. Upcoming precision meas-
urements of cosmic shear will make even greater demands
upon the systematic-error reduction and accurate calibra-
tion that our methods offer.

This work was supported by grant AST 96-24592 from
the National Science Foundation. We would like to thank
Phil Fischer, Deano Smith, Tony Tyson, Jordi Miralda-
Escudé, and Dave Wittman for many discussions on these
methodologies, and help in implementing various image
processing algorithms. Thanks also to all our collaborators
who have waited several years for a coherent explanation of
the methods we are using.

APPENDIX A

POINT TRANSFORMATION FOR LAGUERRE
EXPANSIONS

In x 6.3.2, we derived the mapping matrices for the vector
b of Laguerre expansion coefficients when the underlying
image I is transformed by an infinitesimal translation, dila-
tion, or shear. In this appendix, we derive the coefficients of
the mapping matrices for finite transformations. We have
implemented these transformations as methods for C++
classes that represent the Laguerre expansions.

A1. TRANSLATION

We defined the transformation Tz on the image by

TzIðx; yÞ ¼ Iðx� x0; y� y0Þ ; ðA1Þ
z � x0 þ iy0ð Þ=� : ðA2Þ

We first define a translated raising operator âa�yp by

âa
�y
p ðTzIÞ � Tzða�yp IÞ ðA3Þ

) âa�yp ¼ a�yp � 1
2 z : ðA4Þ

The second line is apparent from examining the form of the
raising operators in equation (6.22). We decompose the
images into our eigenfunctions as I =

P
bpq 

�
pq and

TzI
P

b0pq 
�
pq; then we can express Tz as a matrix operation

on b:

b0 ¼ Tzb ; ðA5Þ
b0p0q0 ¼

X
Tpq
p0q0bpq ; ðA6Þ

Tz 
�
pq ¼

X
Tpq
p0q0 

�
p0q0 ; ðA7Þ

) Tpq
p0q0 ¼ �2

Z
d2xðTz 

�
pqÞ �  �p0q0 : ðA8Þ

A direct integration of equation (A8) yields the first coeffi-
cient

T00
00 ¼ e�jzj2=4 : ðA9Þ

Applying the translated raising operator (eq. [A4]) to the
definition of Tpq

p0q0 (eq. [A7]) yields the recursion relationffiffiffiffi
p0

p
Tpq
ðp0�1Þq0 �

1
2 zT

pq
p0q0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
T

ðpþ1Þq
p0q0 : ðA10Þ

The same procedure using the q raising operator and the
lowering operators gives the recursionsffiffiffiffi

q0
p

Tpq
p0ðq0�1Þ �

1
2
�zzTpq

p0q0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1

p
T

pðqþ1Þ
p0q0 ; ðA11Þffiffiffiffiffiffiffiffiffiffiffiffi

p0 þ 1
p

Tpq
ðp0þ1Þq0 �

1
2
�zzTpq

p0q0 ¼
ffiffiffi
p

p
T

ðp�1Þq
p0q0 ; ðA12Þffiffiffiffiffiffiffiffiffiffiffiffi

q0 þ 1
p

T
pq
p0ðq0þ1Þ �

1
2 zT

pq
p0q0 ¼

ffiffiffi
q

p
T

pðq�1Þ
p0q0 : ðA13Þ

These two relations allow us to generate any T pq
p0q0 recur-

sively from T00
00 . In particular, using the first two we have

Tpq
00 ¼ ð�1=2Þpþqffiffiffiffiffiffiffiffi

p!q!
p zp�zzqe�jzj2=4 : ðA14Þ

One can derive a closed-form expression for the general
Tpq

p0q0 using further recursion, but the expression involves a
double sum and is not particularly illuminating. The most
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efficient algorithm for computing all the coefficients is to
note that the generator for translation (eq. [6.38]) separates
into p- and q-dependent components. The general matrix
element can therefore be expressed as

Tpq
p0q0 ¼ f ðp; p0Þ�ff ðq; q0Þ ; ðA15Þ

with the above recursion relations for Tpq
p0q0 leading to

f ð p; 0Þ ¼ ð�z=2Þpffiffiffiffi
p!

p e�jzj2=8 ; ðA16Þ

f ð p; p0 þ 1Þ ¼ ½ ffiffiffipp
f ð p� 1; p0Þ þ 1

2
�zzf ð p; p0Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ 1

p
:

ðA17Þ

A2. DILATION

The dilation operation is defined by

DlIðx; yÞ ¼ Iðe�lx; e�lyÞ : ðA18Þ

As for the translation, we can define a dilated raising opera-
tor and use it to derive a recursion relation for the coeffi-
cients ofD:

âa�yp ðDlIÞ ¼ Dlða�yp IÞ ;
) âa�yp ¼ cosh l a�yp � sinh l a�q ; ðA19Þ

)
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
D

ðpþ1Þq
p0q0 ¼ cosh l

ffiffiffiffi
p0

p
Dpq

ðp0�1Þq0 ðA20Þ

� sinh l
ffiffiffiffiffiffiffiffiffiffiffiffi
q0 þ 1

p
Dpq

p0ðq0þ1Þ : ðA21Þ

Using the recursion operator and its q equivalent, we can
generate any desired coefficient fromD00

pq. With a direct inte-
gration analogous to equation (A8), we derive

D00
pq ¼ el sech l ðtanh lÞp�pq : ðA22Þ

In deriving this, we make use of the identity

L
ðmÞ
q ð�xÞ ¼

Xq
k¼0

qþm

q� k

� 	
�kð1� �Þq�kL

ðmÞ
k ðxÞ ðA23Þ

(Abramowitz & Stegun 1965). In fact, with this identity one
can derive any Dpq

p0q0 by direct integration, but the closed
form is a sum over k that is again not particularly useful,
as the recursion relation (eq. [A21]) is a faster way to gener-
ate the coefficients.

A3. SHEAR

A shear � oriented on the x-axis gives the transformation

S�Iðx; yÞ ¼ Iðe��=2x; e�=2yÞ : ðA24Þ

When we define the transformed raising operator âa�yp as for
the translation and dilation, we find the operator and conse-
quent recursion relation to be

âa�yp ¼ cosh ð12 �Þa
�y
p � sinh ð12 �Þa

�
p

)
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
S
ðpþ1Þq
p0q0 ¼ cosh ð12 �Þ

ffiffiffiffi
p0

p
Spq
ðp0�1Þq0 ðA25Þ

� sinh ð12 �Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
p0 þ 1

p
Spq
ð p0þ1Þq0 : ðA26Þ

The recursion again simplifies by noting that the shear gen-
erator in equation (6.33) separates into p-operands and q
operands. Hence the matrix elements must be expressible as

Spq
p0q0 = f(p, p0)f(q, q0). We can determine the function f(p, 0)

by direct integration of the Sp0
00 matrix element, which yields

(for p even)

Sp0
00 ¼

ffiffiffiffi
p!

p
ðp=2Þ! sech

�
�

2

	
� tanhð�=2Þ

2

� �p=2
; ðA27Þ

) Spq
00 ¼

ffiffiffiffiffiffiffiffi
p!q!

p
ðp=2Þ!ðq=2Þ! sech

�
�

2

	
� tanhð�=2Þ

2

� �ðpþqÞ=2
:

ðA28Þ

The coefficients vanish if p or q is odd. The recursion rela-
tion then generates any desired coefficient. For a shear ori-
ented at position angle 	, the coefficients acquire an
additional phase factor exp [i(p0 � q0 � p + q)	].

APPENDIX B

CONVOLUTION OF LAGUERRE EXPANSIONS

We wish to derive the coefficients that express the convo-
lution of two eigenfunctions as a new sum over eigenfunc-
tions, as defined in equation (6.57). This will be easier if we
work in k-space, with the convolution turned into a multi-
plication as in equation (6.59), with the k-space eigenfunc-
tions given in equation (6.62).

A rapidly computable recursive formulation of the coeffi-
cients is again derivable from the raising operator. From the
form of the k-space raising operator (eq. [6.61]), we see that
if �2o = �2i + �2?, then

�o~aa
�oy
p

~IIo ¼ ð�i~aa�iyp
~IIiÞ~II? þ ~IIið�?~aa�?yp

~II?Þ ;

) �?
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p? þ 1

p
C

piqiðp?þ1Þq?
poqo ¼ �o

ffiffiffiffiffi
po

p
Cpiqip?q?

ðpo�1Þqo ðB1Þ

� �i
ffiffiffiffiffiffiffiffiffiffiffiffi
pi þ 1

p
C

ðpiþ1Þqip?q?
poqo :

ðB2Þ

An equivalent manipulation with the lowering operator
yields the recursion relation

�o
ffiffiffiffiffi
po

p
Cpiqip?q?

ðpoþ1Þqo ¼ �i
ffiffiffiffi
pi

p
C

ðpi�1Þqip?q?
poqo þ �?

ffiffiffiffiffi
p?

p
C

piqiðp?�1Þq?
poqo :

ðB3Þ

These recursion relations and their q equivalent will allow
us to derive any coefficient if we know C

piqi00
poqo , i.e., if we can

calculate the effect of multiplication by the Gaussian ~  �?00.
This is straightforward if we recall that mo = mi for m? = 0
and use equation (A23):

2� ~  �ipiqi
~  �?00 ¼ 2

ffiffiffi
�

p Xpi
po¼0

Xqi
qo¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
pi!qi!

po!qo!

s

�DðpoþqoÞ=2ð1�DÞqi�qo

ðqi � qoÞ!
~  �opoqo ; ðB4Þ

) Cpiqi00
poqo ¼ 2

ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
pi
po

	�
qi
qo

	s
DðpoþqoÞ=2

�ð1�DÞðpi�poþqi�qoÞ=2 ; ðB5Þ

D � �2i
�2o

¼ �2i
�2i þ �2?

¼ 1� �2?

�2o
: ðB6Þ

The parameter D is the ‘‘ deconvolution ratio,’’ with D = 1
being the limit of perfect resolution and D = 0 meaning a
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PSF much broader than the image. This expression and the
recursion relations are both separable into p- and q-depen-
dent terms, so we can simplify the computation of the
matrix elements by using the expression

C
piqip?q?
poqo ¼ 2

ffiffiffi
�

p � ffiffiffiffiffiffiffiffiffiffiffi
pi!p?!

po!D!

s
Gðpo; pi; p?Þ

�� ffiffiffiffiffiffiffiffiffiffiffi
qi!q?!

qo!D!

s
Gðqo; qi; q?Þ

�
;

ðB7Þ
D � pi þ p? � po ¼ qi þ q? � qo � 0 : ðB8Þ

Terms for which the conditions in equation (B8) are not met
are zero. The recursion relations and specific values given
above forC can be recast for the functionG as follows:

Gðpo þ 1; pi; p?Þ ¼
�i
�o

Gðpo; pi � 1; p?Þ

þ �?
�o

Gðpo; pi; p? � 1Þ ; ðB9Þ

Gð0; pi; p?Þ ¼ ð�1Þp? pi þ p?
pi

� 	
�i
�o

� 	p? �?
�o

� 	pi

; ðB10Þ

The symmetry between initial and PSF images is clear in
these equations. There is a consequent closed form for
G(po, pi, p?), but it is again not particularly illuminating,
and the recursive form is stable and faster for computation.

In the case where the PSF is a unit-flux Gaussian, equa-
tion (B5) can be used to give the observed bo in terms of the
intrinsic decomposition:

bopoqo ¼
X1
j¼0

DðpoþqoÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
po þ j

po

� 	
qo þ j

qo

� 	s
� ð1�DÞjbiðpoþjÞðqoþjÞ ðpo � qoÞ : ðB11Þ

Note that the convolution matrix C is in this case block-
diagonal, as the m states do not mix, and also upper triang-
ular, as po, qo 
 pi, qi for nonzero elements. The inverse
(deconvolution) matrix can in this case be expressed in
closed form:

bipiqi ¼
X1
j¼0

D�ðpiþqiÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi þ j

pi

� 	
qi þ j

qi

� 	s

� 1�D

D

� 	j

ð�1ÞjboðpiþjÞðqiþjÞ : ðB12Þ

APPENDIX C

SECOND-ORDER FORMULAE FOR
PSF DILUTION

Here we describe a refinement to the resolution parameter
R defined in equation (6.1). The observed ellipticity is R
times the true ellipticity in the special cases of unweighted
moments or when the PSF is a circular Gaussian and the
galaxy an elliptical Gaussian. In these cases the factor R can
be expressed as

R ¼ 1� s2?=s
2
o ; ðC1Þ

s2 � hðx2 þ y2Þ=2i ¼ �2 cosh � : ðC2Þ

In the second line we have assumed that the methods of x 3
have been used to shear the object by � to produce some-
thing that is ‘‘ round ’’ under a Gaussian weight of optimal
size �.

Here we derive a form for R that is applicable to the case
in which the galaxy has homologous elliptical isophotes
with �51, but with an arbitrary radial profile. In the lan-
guage of our Laguerre coefficients, we have b11 = 0 by
proper choice of �, and bpp are arbitrary for p � 2. By
equation (6.34), this slightly out-of-round object has
b20 =

ffiffiffi
2

p
�(b00 � b22)/4. All odd-indexed coefficients are

zero.
We also take the PSF size �? to be small compared

with the intrinsic object size �i. The action of this small
isotropic convolution C�? on the moments is the same as
a transformation in which the image I is replaced by the
average of two versions displaced by 	�? in the x-direc-
tion, followed by a similar infinitesimal spread in the y-
direction. Defining z = �?/� and using a second-order
version of the generator equation (6.38), we can show
that

C�? ¼ 1
4 Tz þ T�zð Þ Tiz þ T�izð Þ ðC3Þ

� 1þ 1
2 z

2


a
y
pa

y
q þ apaq � p� q� 1

�
: ðC4Þ

When this convolution acts upon our original slightly
elliptical object, the resulting object has Laguerre coeffi-
cients b0 with

b000¼ b00ð1� z2=2Þ ; ðC5Þ
b020¼ b20ð1� 3z2=2Þ ; ðC6Þ
b022¼ b22ð1� 5z2=2Þ : ðC7Þ

We then need the value �0 of the shear that will make this
new object appear round. According to equation (6.47),
this will give

�0 ¼ �ðb00 � b22Þð1� 3z2=2Þ
1� b00ðz2=2Þ � b22ð1� 5z2=2Þ ðC8Þ

) R � �0

�
¼ 1� z2 1þ 2b22

b00 � b22

� 	
þOðz4Þ ðC9Þ

� 1� �2?
s2
; ðC10Þ

s2 � �2
b00 � b22
b00 þ b22

: ðC11Þ

Note that the kurtosis measure a4 defined in equation
(3.24) is the same as the b22/b00 that appears here. We
make the Ansatz that the correct form for R in the case
of finite dilution or finite e is the Gaussian form equation
(C1) with the kurtosis term added:

ei ¼ eo=R ; ðC12Þ
R ¼ 1� s2?=s

2
o ; ðC13Þ

s2 � 1� a4
1þ a4

�2 cosh � : ðC14Þ

Note that we apply the kurtosis correction to the PSF
size measure s2? in the same way as for the object to give
a well-behaved correction for poorly resolved objects.
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