THE ASTROPHYSICAL JOURNAL, 600:17-25, 2004 January 1
© 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DARK ENERGY CONSTRAINTS FROM WEAK-LENSING
CROSS-CORRELATION COSMOGRAPHY

G. BERNSTEIN AND B. Jan
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104;
garyb@physics.upenn.edu, bjain@physics.upenn.edu
Received 2003 July 8; accepted 2003 September 10

ABSTRACT

We present a method for implementing the idea of Jain & Taylor for constraining cosmological parameters with
weak gravitational lensing. Photometric redshift information on foreground galaxies is used to produce templates
of the mass structure at foreground slices z;, and the predicted distortion field is cross-correlated with the measured
shapes of sources at redshift z;. The variation of the cross-correlation with z; depends purely on ratios of angular
diameter distances. We propose a formalism for such an analysis that makes use of all foreground-background
redshift pairs and derive the Fisher uncertainties on the dark energy parameters that would result from such
a survey. Surveys from the proposed Supernova/Acceleration Probe (SNAP) satellite or the Large Synoptic Survey
Telescope (LSST) observatory could constrain the dark energy equation of state to o, ~ 0.01 fs;l and o, ~

212 N . . . y
0.035_}‘Sky after application of a practical prior on (2,. Advantages of this method over power-spectrum
measurements are that it is unaffected by residual point-spread function distortions, is not limited by sample
variance, and can use nonlinear mass structures to constrain the cosmology. The signal is, however, very small,
amounting to a change of a few parts in 103 of the lensing distortion. In order to realize the full sensitivity to
cosmological parameters, the calibration of lensing distortion must be independent of redshift to comparable
levels, and photometric redshifts must be similarly free of bias. Both of these tasks require substantial advances
over the present state of the art, but we discuss how such accurate calibrations might be achieved using internal
consistency tests. Elimination of redshift bias would require the spectroscopic redshifts of ~10%—10° high-redshift

galaxies—fewer for lensing surveys less ambitious than SNAP or LSST.

Subject headings: cosmological parameters — gravitational lensing

On-line material: color figures

1. INTRODUCTION

Weak gravitational lensing is already one of the more
accurate constraints on cosmological parameters: several
groups have measured the power spectrum of the shear induced
on background galaxies by foreground mass fluctuations,
leading to ~10% constraints on the matter power spectrum
normalization og (Bacon et al. 2003; Brown et al. 2003;
Hamana et al. 2003; Hoekstra, Yee, & Gladders 2002b; Jarvis
et al. 2003; Refregier, Rhodes, & Groth 2002; van Waerbeke
et al. 2002). The weak-lensing method has potential for much
more precise constraints on og and other parameter combina-
tions, once larger sky areas are surveyed. The addition of
redshift information on the source galaxies allows measure-
ment of the mass power spectrum as a function of redshift,
which is expected to greatly increase the accuracy of weak-
lensing cosmological constraints (Hu 1999, 2002a, 2002b;
Huterer 2002; Abazajian & Dodelson 2003; Heavens 2003;
Refregier et al. 2003; Knox 2003) and permit reconstruction of
the three-dimensional mass distribution (Taylor 2001; Hu &
Keeton 2002). Weak-lensing surveys currently underway such
as the Canada-France-Hawaii Telescope Legacy Survey'
(CFHTLS) and the Deep Lens Survey” will gather photometric
redshift information to facilitate this “tomographic” analysis.

The successful constraint of the mass power spectrum and
cosmological parameters at 1% levels will require the

! See http://www.ctht.hawaii.edu/Science/CFHLS.
2 See http:/dls.bell-labs.com.

17

reduction of several sources of systematic error. On the
theoretical side, there are not yet predictions of the mass
power spectrum P(k, z) that are accurate to the percent level in
the nonlinear regime (see Linder & Jenkins 2003 for further
discussion). A concerted application of N-body computing
would likely yield the dark matter spectrum to the desired
accuracy, although on very small scales the contribution of
baryons to the power spectrum must be included and will be
difficult to calculate. The inaccuracies of power-spectrum
estimation can be bypassed by using only large-scale
information, for which linear or perturbative calculations
suffice, but this means discarding most of the lensing
information, which lies at nonlinear scales.

On the measurement side, currently published power-
spectrum measurements all show contamination by systematic
errors at the ~10% level or higher. This systematic power is
likely residual from the process of correcting galaxy shapes for
point-spread function (PSF) effects. New methodologies have
been introduced (Bernstein & Jarvis 2002; Refregier 2003;
Kaiser 2000) that should greatly reduce the systematic
contamination, but this remains to be demonstrated. There
are also subtle difficulties in calibrating the weak-lensing signal
to 1% accuracy (Bernstein & Jarvis 2002; Hirata & Seljak
2003).

Jain & Taylor (2003) introduce a new method for analyzing
weak-lensing data with depth information that promises to
largely bypass these systematic difficulties. The basic concept
is to use the survey’s photometric redshift data to create a map
of the foreground galaxies, from which an estimated map of the
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foreground mass can be made. This foreground mass slice
induces shear on all the galaxies in the background. The
measurement consists of tracking the amplitude of the induced
shear as a function of the background redshift. Once a fore-
ground shear “template™ at z; is created, the dependence of
shear on the source redshift z; is given solely by geometric
factors. By taking ratios of the induced shears at different z,
any sensitivity to errors in the foreground mass template is
canceled out, leaving us with a purely geometric observable.
One is not attempting to discern the line-of-sight structure, so
this is not tomography. We could call this ““cross-correlation
cosmography” since the measured quantities are metric
elements of the homogeneous cosmology.

The idea of using lensing effects on sources at differing
redshift to constrain cosmological parameters has been
examined before (Link & Pierce 1998; Gautret, Fort, & Mellier
2000; Golse, Kneib, & Soucail 2002; Sereno 2002), with Jain
& Taylor (2003) offering a methodology for massive data sets
that is insensitive to the nature of cluster or halo profiles and
examines a time-dependent dark energy component.

The practical advantages of cross-correlation cosmography
include the following:

1. No theoretical estimate of the mass power spectrum is
required. The mass fluctuations are estimated directly from the
foreground galaxy distribution, and any inaccuracies (e.g., bias)
are canceled out in the analysis. The observables are hence
calculable to arbitrary accuracy.

2. With no need for a modeled power spectrum, we can use
shear information on all scales sampled by the data. The lensing
distortion variance (d?) is ~(5%)>2, which is at least 2 orders of
magnitude larger than the variance due solely to linear-regime
fluctuations. Hence, the signal-to-noise ratio (S/N) of the weak-
lensing data will be much higher.

3. Because the background shear is being cross-correlated
with a template, the shear signal enters only linearly into the
statistics. Systematic powers (e.g., PSF residuals) average to
zero since they will not correlate with the foreground shear
template. This makes the PSF-correction task immensely easier
than for power-spectrum tomography, in which systematic
power adds to the shear power. For cross-correlation cosmog-
raphy, systematic power may increase uncertainties but does not
bias the results. In the language of experimenters, we have
changed from a total-power measurement to a phase-sensitive
method.

4. Uncertainties in calibration of the shear signal will also
cancel if they are independent of z,, since we will be interested
only in ratios of shear at different z;. We see below, however, that
the method is highly sensitive to differential calibration errors.

Taking the ratio of shear signals at different z; provides a pure
geometric measurement, but taking this ratio does decrease the
dependence of the signal on cosmological parameters. Large
numbers of galaxies must be surveyed in order to reduce
random errors to make up for the smaller signals, but surveys of
up to 10° galaxies are currently being planned.

In this paper we investigate the potential of cross-correlation
cosmography by proposing an analysis methodology that
appears close to optimal and calculating the expected
cosmological-parameter uncertainties with the Fisher-matrix
method. We then apply this analysis to some planned weak-
lensing surveys. Finally, we return to the issue of systematic
errors, exploring the accuracies that will be required for
photometric redshift estimates and shear calibration.
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2. CROSS-CORRELATION FORMALISM
2.1. The Observable Quantity

The underlying assumption of the method is that the ob-
served ellipticity of background galaxy k€ {1, 2, ..., N} is

bs — Zdl(xk)glk erk.,sys + ey . (l)
!

The quantities of interest will be the geometric factors

— r(Xs — Xl)
m= "0 @)

where x; and x, are the comoving distances to the lens and
source planes and r(x) is the comoving angular diameter
distance. For a flat universe, 7(x) = x. Each of the d; is the
distortion field® imparted on the source plane at Y = oo by the
mass in redshift shell /. It can be expressed as an integral over
the mass distribution in the redshift shell by well-known
formulae, e.g., Bartelmann & Schneider (2001). Note that the
distortion d is twice the shear ~ in the weak-lensing limit. Its
variance (d?) can be calculated as an integral of the mass power
spectrum P(k, z;), with the formula in the Appendix. Our
method, however, will be to make as little use as possible of the
power spectrum.

Equation (1) is correct only in the limit that the induced
distortion d;, the instrumental systematic distortion dy sys, and
the intrinsic galaxy shape e are all <1. The addition operator
in distortion space is in fact nonlinear (Bernstein & Jarvis
2002), a detail that is important but manageable if we avoid the
~1% of the sky where the lensing distortion is strong.

Any weak-lensing measurement maximizes the likelihood of
the measured €{> under some model for the shear planes d;
(and perhaps the systematic error contribution simultaneously).
In power-spectrum tomography, one varies the assumed power
spectra of the d; to best match the observed covariances of the

€9, In our case, we assume that it is possible to produce some

estlmate d; of the distortion pattern without reference to the
background galaxy-shape information. In practice, this tem-
plate distortion would be developed from the galaxies
identified near z; from the photometric redshift data. This
could be as simple as convolving the galaxy distribution with
an isothermal halo model or could perhaps involve a more
sophisticated identification of groups and clusters. We allow
that the template distortion is inaccurate to some level, because
of galaxy bias or other errors:
(dd)) = 3,(d}), (3)

where (3; is a measure of the fidelity of our template and is
related to the bias b and correlation coefficient » between
galaxies and mass, e.g., as measured by Hoekstra et al. (2002a).

To isolate the geometric term, we correlate the template
distortion with the measured distortion. We wish to sum the
measurements from all source galaxies in some bin s of
redshift centered on z;. When the shape noise is dominant, the
sum that is optimal in the sense of best S/N on g, is

Xis = Zeom dy(xy) (4)

V kes

3 The distortion denoted as & in Bernstein & Jarvis (2002) is labeled d here
in order to avoid confusion with the Kronecker delta.
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Here N; is the number of source galaxies in bin s. Under the
model in equation (1) the X, is

Z Rugps +

R[// = <ti['d//>s. (6)

(drdss) +{dre),. (5)

Here the subscript s on the average means that we are averaging
over the galaxies in source bin s, as in equation (4), not over
realizations of the distortion fields. For a given survey, the
cosmology predicts the g, values, the templates are known, and
the Ry are free parameters. The cosmological parameters {p;}
are determined by fitting the X = {X,} data vector to the model
in equation (5) with free parameters {p;, Ry}, then margin-
alizing over the cross-correlations {R;} to obtain confidence
bounds for the p;,. The intrinsic ellipticities and perhaps
systematic errors act as measurement noise on each Xj.

We now assume that the intrinsic ellipticities e; and the
systematic-error distortion dj s are independent of the
template. We also assume that the distortions and templates
are uncorrelated between lens shells, so that (R;) =0 for
[ # I'. This last assumption is true if the shells are much thicker
than the correlation length of the mass distribution; any
correlations could be accommodated in a more sophisticated
analysis or eliminated by applying high-pass filters to the
templates. With these assumptions, the expectation value for
the X;; when we average over realizations of the distortion
fields is

(Xis) = (Ru)gis = Bi{d] ) gy - (7)

2.2. Covariance Matrix and Likelihood

In order to calculate probabilities for fits to the X-vector, we
need its covariance matrix C,. From the definition (4) and the
model in equation (1), we can obtain the covariance in a
straightforward manner. Note that when fitting to the model in
equation (1), we consider only the shape noise and systematic
errors to be random variables. The distortion planes, or more
precisely the cross-correlations Ry, are considered to be free
parameters in the fit, not random variables. We henceforth
ignore the systematic distortion dys, assuming that it is a minor
contributor to the noise compared to the shape noise e. We have
already seen that the systematic errors do not bias the
observables if they are uncorrelated with the templates.

We assume the e; to be independent, with Var(e;) =
Var (ey) = 02, the variance in each component. Intrinsic cor-
relations of galaxy shapes may slightly inflate our uncertainties
but should again be uncorrelated with the d;, and hence do not
bias the fit. In this case we have

(Cx)jspryr = Cov (XisXryr)

2/ 32
2 Je<dl> _q
= O, <d1'dl’>s — N, y = l?
* ~0, 1#1. (8)

The [ # [’ cross-correlation is negligibly small if the survey is
much larger than the correlation length of the distortion
templates.

The distributions of the d; and ey, are very non-Gaussian. For
a survey with many source galaxies and an area much larger
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than the distortion correlation length, however, the distribution
for Xj, should approach a Gaussian by the central limit theorem.
The likelihood of an observed X-vector given a choice of
model parameters is then given by the usual Gaussian formula
with covariance matrix C,. With the likelihood, we can produce
confidence bounds on the parameters of the underlying
geometry, once we marginalize over the unknown Ry

2.3. Fisher Uncertainties

Given the likelihood function, the minimal uncertainties on
the model parameters can be derived from the Fisher matrix:

oL
”‘Qm@)’ ©)

where £ = log L. The Fisher matrix for the Gaussian case is
well known, e.g., Tegmark, Taylor, & Heavens (1997):

i
Fy=5Tr(C'C,c7'C,) + (XT)c X)), (10)

As usual, the subscripts with commas denote derivatives. This
simplifies considerably in our case, since C, is diagonal and
independent of the parameters.

The model parameters are of two kinds: the nuisance
parameters {R;/} and the cosmological parameters { p;}. We
wish to split the Fisher matrix into submatrices Fgg, F,z, and
F,,. Henceforth, we adopt the convention that Greek indices
(or 1) range over the lens planes, the s index runs over source
planes, and other Latin indices (except /) range over the
cosmological parameters. Keeping in mind that it takes two
Greek indices to specify one R-component, the three sub-
matrices Fgr, Fyr, and F,, are respectively

a[i;w = auz gisgﬂ,q (11>
N
= oy G, (12)
o {dz)
Fiaﬂ: Z ny q«,v (13)
e v

FUZ 2

« 6 Oé

RosRay (Gy) 4, - (14)
d,-
The geometric factors are encoded in the matrices
dn
G) = [ dzy— B 15
()= [ o000 (15)
dn dg’is
Gi).z= [ dz 16
(G = [ dn G sus g, (16)

(Gij)ag = /d

The redshift distribution of sources dn/dz is normalized to a
unit integral, and N is the total number of sources in the survey.

dn dg,, dgg,

17
dZv dp; dp; (17)
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There is no loss of information in moving to infinitesimal
source-redshift bins.

2.4. Prior Information

We are interested in the covariance matrix C, of the
geometric parameters after marginalization over the R-param-
eters. If L is the number of lens planes in the model, there are
L? free Ry being marginalized, and after this marginalization
the constraints on the cosmological parameters are relatively
weak for envisioned surveys.

There is, however, additional information about the R-values
that has not been incorporated into the model of equation (5),
and hence not in the Fisher matrix of equation (11). We expect
that the Ry are near 0 for / # I’ because the lens planes are
uncorrelated. We incorporate this knowledge with a prior
probability on the R-values. If the prior is Gaussian, then we
can add the inverse of the R covariance matrix to the Fpp
component of the Fisher matrix.

Note that until this point we have had no use for an ensemble
of mass distributions; all of the quantities in the solution and
Fisher matrix for the cosmological parameters make use of just
the R for the single realization of the mass distribution that
exists in our survey field. It is only in assembling a prior on
these values (and in estimating typical values in § 2.5) that we
make use of the ensemble properties of the mass distribution.
This is why the sample variance contribution is unimportant in
the uncertainties of the cross-correlation method.

In the Appendix we show that the covariance matrix for Ry
is nearly diagonal. The diagonal terms are

Cov(RasRas) = <d§><d§> 953 . (18)

Here (2 is the total solid area of the survey, and €2, 3 is a measure
of the area of coherence of the two distortion fields d,, and d3.
For the redshift ranges of interest, Q.5 <1 arcmin®. The only
off-diagonal terms in the covariance matrix for the R-values are
Cov (RupRp, ). To simplify the following algebra, we take the
covariance matrix for our prior on R to have diagonal elements
that are twice as large as equation (18) and drop the covariance
between R, 3 and Rg, . This prior distribution is less restrictive
than is the full covariance matrix, so we are at liberty to make
this choice.

As a cautionary step we do not make use of the prior
information on R, . This is because R,, appears in the ex-
pectation value (X,;) in equation (7), and hence prior
assumptions may bias the fit for the cosmological parameters
that drive the g, in this fit.

With this simplified, diagonal prior for the R-values, the
Fisher matrix for the system is altered from equation (11) as

N og
Fapuy — 5auﬁ Gy + 03y (1 = Bap) o T\ (19)
0e< a> ana“/j<dﬂ>
N
(G+P.)s , (20)

where P, is simple, having only diagonal elements and a zero
at the a-element of the diagonal. Here n = N /) is the sky
density of source galaxies.
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2.5. Marginalization

We now return to the marginalization over the R,, 5 to obtain a
covariance matrix C, for the cosmological parameters. Using a
common matrix identity, we obtain

(C;I )ij :(Fp - FPRFI;I%F;R)ZJ
N 1
2 2T /Z o
< [G-GIG+P) 6| . @

By

This gives the Fisher uncertainties on cosmological parameters
for a survey over a sky with given distortion field and hence
given R-values. We next average over realizations of the mass
distribution in the universe, which requires that we calculate

(Rusar) = Cov (RasRar) + (Rus) (R @)

= ((2) () S+ stk @)

Combining equations (7), (21), and (22), we obtain the
expected (inverse) covariance matrix for the cosmological
parameters:

[e7e7

+ %:<d§> % [Gi/' -G/ (G + Pa)_lG./} 33} :

(24)

(6, =% {ﬂi<ai§>[cf,»— GI(G+P.) 6]

We note first that there is no “sample variance limit” to the
cross-correlation cosmography measure of the cosmological
parameters; uncertainties scale as 1/y/N as the density of
sources becomes large. Sample variance typically arises when
one does not measure enough independent patches of the
density field to adequately constrain its power spectrum. In our
application, however, we are not using the power spectrum to
measure cosmology, we instead are just cross-correlating the
observations with whatever mass distribution the universe
gives us. Hence, there is no sample variance contribution.

The left-hand term in equation (24) arises purely from the
shape noise in the measured field that is being cross-correlated
with the templates, while the right-hand term arises because the
distortion from one lens slice acts as a correlated noise source
for all the Xj;. The right-hand term has an amplitude ~L/N,
relative to the left-hand term, where L is the number of lens
planes and N, = ©/Q,3 is the number of independent cells or
patches of the distortion fields. In almost any large survey, we
should be able to choose the lens-plane width Az, to be
sufficiently narrow that the ¢, do not vary significantly within
the bin, and still have L/N, < 1. In other words we will usually
have more than enough independent patches to decorrelate the
different lens planes.

In the regime in which the left-hand term dominates, the
parameter accuracy is essentially independent of the fore-
ground binning, as long as the fidelity 3; remains high and the
shells remain uncorrelated.
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3. APPLICATION TO CANDIDATE SURVEYS
3.1. Cosmological Parameters

Any parameter that influences the growth factor a(¢) or
curvature of the universe will have some effect on the X-data
via g;,; in particular, we are interested in the present-day matter
and energy densities €2, and 2y and the parameters wy and w,
that approximate the equation of state of the dark energy via
(Linder 2003)

Px = [wo +wu(1 —a)]px - (25)

We henceforth assume a flat universe, 2y = 1 — §2,,, in which
case we have (Linder 2003)

@) =x(2) = / % [Qmu L2y

~1)2
+ (1 - Qm)(l —|—z/)3<1+WO+W”>6_3W”Z//(1+Z/) ) (26)

Unless otherwise noted, we calculate the sensitivity to
departures from the canonical A-dominated cold dark matter
(ACDM) model (2,, = 0.3, wo = —1, w, = 0).

3.2. Mass Variance

The distortion power generated by a mass slice at z; and the
coherence areas (2,3 can be estimated by applying the formulae
in the Appendix to a model for the nonlinear evolution of the
power spectrum. We reiterate that errors in this model will
affect only our forecasted uncertainty, not the derived
cosmological parameters.

We use the nonlinear mass power spectrum given by the
fitting formula of Peacock & Dodds (1996), with implementa-
tion for weak lensing as described in Jain & Seljak (1997). We
need this only for the fiducial ACDM model, for which the
differences between different fits to N-body simulations are
small (Smith et al. 2003). The integrals over the power
spectrum are cut off for & > 27/(50 kpc); this is a crude way of
accounting for the fact that we will have to exclude the central
regions of galaxy clusters, where the lensing is strong and
where the light of the foreground galaxies may preclude
observation of the background galaxies. The results are not
sensitive to the choice of the high-k cutoff. We assume that the
estimated templates d; have the same variance as the true
distortion fields d, but with fidelity 3; = 0.8. The uncertainties
on cosmological parameters scale as 3; .

The bottom panel of Figure 1 plots the strength of lensing
distortion versus redshift, d(d?)/dz, that arises from this
model. For the coherence angle, we use

Qg = (0224) (xaxs) . (27)
which is within ~25% of the more carefully calculated values.
The coherence area has only a minor impact on the cosmolog-

ical uncertainties.

3.3. Redshift Distribution
We adopt the common guess for the redshift distribution of

faint galaxies,
d 1.5
Ll Zexp l— (i) ] , (28)
dz Z0
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Fic. 1.—Top: Fractional change in the geometric factor g, = (x5 — X1)/Xs
when we shift from a pure ACDM universe to one with w, = 0.2. This should
be discernible at 1 o significance in the SNAP survey. The horizontal axis is z,
and each line corresponds to a different z;. The triangle at the end of each line
marks z;. Because the mass normalization in each lens slice is free to vary,
vertical shifts of each line carry no cosmological information, so we align
them all to be unity at z;. The cosmological information is carried in the
departures of each line from horizontal; these departures are small, amounting
to only a few parts in 10° change in the induced background distortion. The
smallness of this signal implies that the calibration of the distortion
measurement and the source redshifts must be accurate to roughly a part in
103. Bottom: Assumed source redshift distribution (dotted line) and the
expected distortion variance per unit redshift (solid line) using estimated
nonlinear power spectra. The dashed line shows the relative contribution of
different lens planes to the constraint on w,. [See the electronic edition of the
Journal for a color version of this figure.]

and select zy and the overall density n to crudely mimic the
expectations of several future surveys.

3.4. Parameter Forecasts

Table 1 lists crudely approximated parameters for three
possible weak-lensing surveys: the CFHTLS, just beginning
and expected to take 5 years to cover ~200 deg 2 of sky; a
possible deep multicolor lensing survey covering ~10% of the
sky with the proposed Large Synoptic Survey Telescope
(LSST),* and a 400 deg? weak-lensing survey with the
proposed Supernova/Acceleration Probe (SNAP).> The orbit-
ing SNAP focal plane should obtain significantly higher source
galaxy densities than the ground-based observatories, with a
consequently deeper median redshift.

In evaluating the Fisher matrix, we assume that o, = 0.3 and
that §; = 0.8. Cosmological parameter uncertainties scale as
o./B. Weuse Az; = 0.2 for the thickness of the lens slices. This
choice has very little impact on the parameter constraints
because the first term dominates equation (24), e.g., changing
to Az; = 0.1 for the SNAP case alters the parameter constraints
by <1%.

For each candidate survey we evaluate the cosmological-
parameter covariance matrix C, using equation (24). The
resulting matrix is highly degenerate in one direction, so we
adopt a Gaussian prior distribution on 2, with ¢ = 0.03. The

4 See http://www.dmtelescope.org/dark_home.html.
> See http://snap.Ibl.gov.
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TABLE 1
Future WEAK-LENSING SURVEYS AND DARK ENERGY CONSTRAINTS

Galaxy Density

Survey Median z (arcmin—2) Jky wo Error w, Error  wy-w, Correlation
CFHTLS...... 1.0 30 0.005 0.26 1.04 —0.92
LSST........... 1.0 30 0.1 0.06 0.30 —0.80
SNAP.......... 1.5 100 0.01 0.10 0.36 —0.83

constraints in the wy-w, plane after applying this prior and
marginalizing over €2, are plotted in Figure 2 for the three
surveys. Table 1 also lists the 1 o uncertainties in wy and w,
(assuming in each case marginalization over all other
parameters) and the correlation coefficient between these
two parameters.

For both the SNAP and LSST surveys, the constraints on the
dark energy equation of state and its evolution are quite strong,
comparable to or tighter than those of any proposed exper-
iment of which we are aware. The 1 o uncertainties on w,, even
after marginalizing over all other parameters, are o, ~ 0.3
in both cases. In terms of the commonly used parameter
w' = [dw/dIn (1 +2)],_, = w,/2, we have o, = 0.15.

3.5. Dependence of Constraints on Survey Parameters

The Fishler2 uncertainties from the weak-lensing survey will

scale as f,,'~. Because the prior on €2, is independent of fq,,
sky . . . ~1/2

the marginalized error ellipses do not quite scale as f,,*", but

L] L] L] L] L]
1k -
w, of -
-1 -
L L L :i L
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
W,
0

Fic. 2.—Fisher uncertainty ellipses for dark energy parameters derived
from three candidate weak-lensing surveys. All ellipses are 68% confidence
two-dimensional regions (Ax? = 2.3) after application of a Gaussian prior on
Q,, with 0 = 0.03 and marginalization over €2,,. The solid, dashed, and dotted
contours are for the SNAP, LSST, and CFHTLS surveys, respectively. Survey
parameters are listed in Table 1, and a flat universe is assumed. Fiducial
models for both ACDM and a supergravity-inspired model are plotted as stars,
and the shaded regions show the expected constraints from the SNAP Type la
supernova measurements plus 2, prior (E. Linder 2003, private communi-
cation). Unlike the weak-lensing contours, the supernova contours include the
estimated effects of the dominant systematic errors. [See the electronic edition
of the Journal for a color version of this figure.]

this is a valid approximation in the neighborhood of the
canonical survey parameters.

Increased survey depth leads to both greater source density n
and greater median redshift z,,.q. Parameter uncertainties scale
as n~ /2 (again not quite because of the prior), and hence unlike
power-spectrum tomography, there is no break point at which
cosmic variance limits a survey of a given size. The additional
depth is also a benefit: changing zy,eq from 1.0 to 1.5 decreases
the error on w, by 23%, if the galaxy density and survey area are
held fixed. In other words, the increased depth makes each
galaxy about 1.5 times more valuable.

The bottom panel of Figure 1 illustrates the contribution of
different lens planes to the constraint on w, for the SNAP
survey. Most of the information comes from lens planes near
z =1, but if a deeper source distribution were available, lens
planes at higher z would continue to add significant
information. It would be particularly interesting to see how
this behavior is altered with the inclusion of the cosmic
microwave background as a source screen at z~1000.

Combining these various scalings, the overall constraint on
evolution of the dark energy equation of state scales roughly as

0_2 0.5

e —0.6
oy X | —%—=| =z 29
() (29)

med °

3.6. Comparison with Jain & Taylor

Our parameter constraints can be compared with those
obtained by Jain & Taylor (2003), who used a simplified
implementation of the cross-correlation approach. The mea-
surement suggested by them was the tangential shear around
foreground halos, identified using galaxy groups and clusters.
They assumed that essentially all halos out to z=1 with
masses greater than 4 x 10'3 M, could be identified this way.
For a given lens slice, they used source galaxy shapes on only
~10% of the sky. This approach corresponds to taking a
particularly simple construction of the template shear map.
Other simplifications made by Jain & Taylor were that intrinsic
ellipticity shot noise was taken to be the only source of error,
and only two bins in source redshift were used for each lens
slice. We find that the method presented here can improve
parameter constraints, primarily because of the use of more
than two redshift slices. However, our results for o,, and o, are
close to those of Jain & Taylor because the size of the single-
parameter marginalized errors is, for the large surveys
considered, controlled by the prior for €2,,.

4. SYSTEMATIC ERRORS

The cross-correlation cosmography technique is essentially
insensitive to several of the largest systematic error sources in
power-spectrum tomography, namely, residual PSF distortion
and errors in calculation of the nonlinear power spectrum.
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The technique does, however, place stringent demands on the
distortion calibration and photometric redshift accuracy of the
weak-lensing survey. This is illustrated in Figure 1. The top
panel plots the fractional change in g;;, when we move from a
ACDM universe to one with w, = 0.2. According to the Fisher
calculation, this should be detectable at 1 ¢ significance in the
SNAP survey.

4.1. Demands on Distortion Calibration

Each line in the plot shows g, versus z; for one choice of z;.
The “signal” in the cross-correlation cosmography method is
the departure of these curves from horizontal lines. A pure
vertical shift of any line will be degenerate with a change in
the fidelity (3; of the template in lens shell /; hence, the cosmo-
logical information is in the slope/curvature of these lines. We
see that the minimum detectable cosmological signature
corresponds to a change of ~2 parts in 10° of ¢, and hence
an equivalent change in the measured distortion versus z;. We
can immediately conclude that exploitation of this technique to
constrain w, requires that the distortion calibration be
constant to 1 part in 103 over all measured redshifts. This
will be a significant technical challenge. Hirata & Seljak (2003)
demonstrate that present algorithms have calibration errors of
1%—10%, so at least an order-of-magnitude improvement is
required. Hirata & Seljak (2003) and Bernstein & Jarvis (2002)
propose methods to improve calibration accuracy, but these
have not yet been demonstrated on real data. Furthermore, most
methodologies assume that the distortion is weak, i.e., they
ignore induced changes to galaxy shape that are of the order of
d? or higher. The nonlinear effects of even “weak” distortions
will have to be accounted for to second or even third order to
reach the calibration accuracy of 10~3. Regions where the
lensing is strong will clearly have to be avoided.

To estimate the demands of this requirement on the data
reduction methodology, we note that the conversion of
observed ellipticities to preseeing ellipticities typically in-
volves the factor (1 + r2/r?), where 7 is the angular radius of
the (preseeing) galaxy and r, is the PSF radius. A good weak-
lensing methodology makes use of galaxies as small as 7 = r,;
in this case, both r and , must be known to better than 1 part in
103 in order to obtain a distortion calibration accurate to 1 part
in 1073, If » were independent of z, then we would have
redshift-independent calibration errors, which do not affect the
cross-correlation method. Fainter, more distant galaxies are
typically smaller in angular diameter, however, so errors in 7,
will couple to the cosmography measurement.

4.2. Demands on Redshift Determinations

Our formalism can be adapted to deal with the random
errors in photometric redshift measurements, but it will still be
crucial to minimize biases in the photo-z estimates. The
quantity g, scales slightly less than linearly with the redshifts
zg and z;. It is therefore clear that misestimates of the mean
photometric redshift of a few parts in 10? would overwhelm the
signal of a w, = 0.2 cosmology. Hence, photometric redshifts
must be accurate to ~1073 in log (1 + z). This again is at least 1
order of magnitude beyond the present state of the art.

It is important to realize first that this is not a requirement
on the accuracy of each measured photometric redshift but
rather a requirement on the bias of a collection of photometric
redshift estimates. Second, we are not required to use all the
galaxies in the image. One would likely choose to exclude
from the analysis galaxies whose colors make assignment of a
photometric redshift particularly uncertain or ambiguous.
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4.3. Practical Issues

If the required accuracy of distortion and redshift
calibration cannot be achieved, one could introduce additional
free parameters in the model to represent calibration errors.
These terms would be purely functions of z;, and hence in
theory distinguishable from the cosmological signals, which
couple z; and z, through g¢,. The constraints on dark energy
would be degraded to an extent that is calculable with further
Fisher analysis.

We note that if the random error in a typical photometric
redshift is o, ~ 0.03(1 4 z), then it will take a spectroscopic
survey of ~103 galaxies in order to check that the mean error
(bias) is below 1073 (1 + z). Repeating this bias check in bins of
redshift from 0 to 3 would thus require a sample of 10* or 10°
spectroscopic redshifts to compare with the photometric
redshifts. Redshift surveys of this size to limiting magnitudes
of 24 or 25 will be feasible; indeed, the DEEP2 survey6 is
already well on its way to its goal of 65,000 spectra to
Iapg < 24.5.

Given the extreme demands that cross-correlation cosmog-
raphy will place on the calibration of both the lensing
distortion and photo-z calibrations, there will be a significant
advantage to space-based observations. Ground-based analy-
ses must deal with a constantly varying PSF and atmospheric
transmission function, which will make it more difficult to
achieve these accurate calibrations. A space-based platform
will have the additional advantages of thermal stability, a
much sharper PSF, and the possibility of using near-IR filter
bands to improve the photo-z accuracy.

5. CONCLUSION

We have presented a formalism for implementing the idea of
Jain & Taylor (2003) to constrain cosmology by tracing the
dependence of induced distortion on background redshift for a
fixed foreground mass template. Cross-correlating the back-
ground distortion with a series of foreground mass templates
has significant advantages over power-spectrum tomography,
particularly its immunity to spurious distortion signals and the
ability to use nonlinear lensing structures without having to
accurately model the nonlinear evolution of matter in the
universe. We believe this formalism makes use of all the
information available in all lens-source pairs in a nearly
optimal fashion; we find that a survey with a median redshift of
~1.5 and 100 galaxies arcmin2 can constrain the dark energy
parameters to o, ~ O.OlfS;;/ > and o, ~ O.O35f3;y1/ ? after
application of a practical prior on €2,,.

Realization of the full potential of the cross-correlation
cosmography method will require that techniques for the
calibration of lensing distortion and photometric redshift be
improved by at least an order of magnitude from the present
state of the art. There are no known fundamental barriers to
this, but it will not be easy. We discuss ways of fitting for
parameters in the calibration from the data. To reduce possible
biases in the photometric redshifts to an acceptable level would
require spectroscopic redshifts for 10*~10° galaxies over the
redshift range used in the analysis. An orbiting observatory
may be preferred for obtaining the precision required for our
method because of its greater photometric and optical stability
and access to the near infrared.

© See http://deep.berkeley.edu.
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The potential accuracy of cross-correlation cosmography on
the equation-of-state time variation compares well to the
expected precision of power-spectrum tomography. A formal-
ism for full utilization of the power-spectrum tomography
information has not yet been published, and none of the few
published investigations of the effects of time-dependent dark
energy use equation (25) for the equation of state. The assumed
priors and confidence levels of published estimates also
vary greatly, so only crude comparlsons can be made. Hu
(2002b) estimates an error of ~0.05f,** on w' from tomog-
raphy confined to the linear regime. The plots of Benabed & van
Waerbeke (2003) suggest ~0. 03}‘Sk 2 from a nontomo-
graphic analysis deep into the nonlinear regime. It should
ultimately be possible to use all the information encoded in the
weak lensing—cosmography, growth function, and cross-
correlation with foreground structures—to provide constraints
stronger than those we forecast here. By cancelling the growth
information, however, we eliminate the systematic errors that
might arise from miscalculation of the theoretical nonlinear
spectrum and from additive contamination of the distortion
field by systematic effects. The penalty for cancelling the
growth factor is that the signal is partially canceled as well,
leaving the cross-correlation method more susceptible to
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multiplicative, redshift-dependent errors in the distortion field
that might arise from PSF effects.

Further improvements to the cross-correlation cosmography
methodology are worth investigation. The cosmic microwave
background can serve as an additional source plane at z; =
1000, and its shear pattern can be cross-correlated with all the
lens planes to provide an S/N improvement and greater
redshift leverage. One could also make use of magnification
information as well as shear in the background galaxy
samples, which would improve the S/N and serve as a useful
cross-check (e.g., Jain 2002). Finally, in this study we have
not developed a detailed method to obtain template distortion
maps from the foreground galaxy distribution. A detailed
study that includes the redshift dependence of the fidelity of
the template would be useful.
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Michael Jarvis for helpful conversations.

APPENDIX

COVARIANCE MATRIX OF R,z

At several points in the analysis we require the covariances of the slice-to-slice distortion correlations R.3 = (d,-ds). Under the
assumption that dg is completely uncorrelated with both d, and d,, it is clear that the only nonvanishing elements of the

covariance matrix are of the form Var (R, ), Var (Ry3), and Cov (R.sRs, ). We first calculate Var (

Rqp) for a # f:

(RuisRas) / / Prdr [y (r)-ds(r)] [da () ds(r)]) (A1)
:%/dzr [€a+ (M)Eps(r) + Ea—(r)€s-(r)] (A2)

2 d?l
-2 / Gy P DPAD), (A3)

where () is the solid angle of the survey and P, (/) and Pg(/) are the power spectra of the lensing convergence corresponding to the
distortion fields d,, and d g, respectively, at spherlcal harmonic /. We have made use of the shear correlation functions & . as defined,
for example, in Schneider, van Waerbeke, & Mellier (2002), who also give these correlation functions in terms of the convergence
power spectrum. We can also put the distortion variance in terms of the convergence power spectrum:

()= 0

We can now express the covariance straightforwardly as

<Ra’3Rni> = <(j§ ><d§> % ) (AS)
0 ™ [&IP.()Ps(0)
BT T PIP (1) [PIPs(T) (A6)

The quantity (2,5 gives the solid angle over which the two distortion fields maintain mutual coherence. We make the approximation
that the template field d,, has a power spectrum with the same shape as the actual field d,, , so that {2, has the same value regardless of
whether we are correlating the templates or the real distortion, e.g., 23, = Q43.
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If the lens shell thickness Ay satisfies Ay < x;, then we have a simple relation between the convergence power spectrum and the
spectrum P34 of mass fluctuations in three dimensions:

9H2()? i
Pﬂ (l) 0°"m P d<

= W E; X;’i) Ax. (A7)

Here Cov(R,sRg, ) is also nonvanishing; it differs from Var (R,z) in that cross-correlations between d, and d, are required. If
the template is well correlated with the actual mass, then we expect equation (AS5) to describe the covariance up to a factor near
unity, i.e., for R,z to be highly correlated with Rg,. We do not need this expression in detail.

The final nonvanishing term is (again ignoring the distinction between template and actual distortion)

1
Var (Ran) = [ @ ([0 — (@] [ 0) - (@)]). (a9)
which clearly involves the four-point correlation functions of the shear field, and hence depends on the degree of non-Gaussianity
in the mass distribution. Equation (AS5) is correct up to a factor of the order of unity, which we could absorb into the definition of

Qae - This term does not significantly affect the Fisher matrix.
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