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Abstract

We review theory and applications of weak gravitational lensing. After summarising Friedmann-
Lemâıtre cosmological models, we present the formalism of gravitational lensing and light propagation
in arbitrary space-times. We discuss how weak-lensing effects can be measured. The formalism is
then applied to reconstructions of galaxy-cluster mass distributions, gravitational lensing by large-scale
matter distributions, QSO-galaxy correlations induced by weak lensing, lensing of galaxies by galaxies,
and weak lensing of the cosmic microwave background.
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1 Introduction

1.1 Gravitational Light Deflection

Light rays are deflected when they propagate through an inhomogeneous gravitational field. Although
several researchers had speculated about such an effect well before the advent of General Relativity (see
Schneider et al. 1992 for a historical account), it was Einstein’s theory which elevated the deflection of
light by masses from a hypothesis to a firm prediction. Assuming light behaves like a stream of particles,
its deflection can be calculated within Newton’s theory of gravitation, but General Relativity predicts that
the effect is twice as large. A light ray grazing the surface of the Sun is deflected by 1.75arc seconds
compared to the 0.87arc seconds predicted by Newton’s theory. The confirmation of the larger value in
1919 was perhaps the most important step towards accepting General Relativity as the correct theory of
gravity (Eddington 1920).

Cosmic bodies more distant, more massive, or more compact than the Sun can bend light rays from a
single source sufficiently strongly so that multiple light rays can reach the observer. The observer sees an
image in the direction of each ray arriving at their position, so that the source appears multiply imaged. In
the language of General Relativity, there may exist more than one null geodesic connecting the world-line
of a source with the observation event. Although predicted long before, the first multiple-image system was
discovered only in 1979 (Walsh et al. 1979). From then on, the field ofgravitational lensingdeveloped
into one of the most active subjects of astrophysical research. Several dozens of multiply-imaged sources
have since been found. Their quantitative analysis provides accurate masses of, and in some cases detailed
information on, the deflectors. An example is shown in Fig. 1.

Figure 1: The gravitational lens system 2237+0305 consists of a nearby spiral galaxy at redshiftzd = 0.039
and four images of a background quasar with redshiftzs = 1.69. It was discovered by Huchra et al. (1985).
The image was taken by theHubble Space Telescopeand shows only the innermost region of the lensing
galaxy. The central compact source is the bright galaxy core, the other four compact sources are the quasar
images. They differ in brightness because they are magnified by different amounts. The four images
roughly fall on a circle concentric with the core of the lensing galaxy. The mass inside this circle can be
determined with very high accuracy (Rix et al. 1992). The largest separation between the images is 1.8′′.

Tidal gravitational fields lead to differential deflection of light bundles. The size and shape of their cross
sections are therefore changed. Since photons are neither emitted nor absorbed in the process of gravita-
tional light deflection, the surface brightness of lensed sources remains unchanged. Changing the size of
the cross section of a light bundle therefore changes the flux observed from a source. The different images
in multiple-image systems generally have different fluxes. The images of extended sources, i.e. sources
which can observationally be resolved, are deformed by the gravitational tidal field. Since astronomical
sources like galaxies are not intrinsically circular, this deformation is generally very difficult to identify in

2



individual images. In some cases, however, the distortion is strong enough to be readily recognised, most
noticeably in the case ofEinstein rings(see Fig. 2) andarcs in galaxy clusters (Fig. 3).

Figure 2: The radio source MG 1131+0456 was discovered by Hewitt et al. (1988) as the first example of
a so-calledEinstein ring. If a source and an axially symmetric lens are co-aligned with the observer, the
symmetry of the system permits the formation of a ring-like image of the source centred on the lens. If
the symmetry is broken (as expected for all realistic lensing matter distributions), the ring is deformed or
broken up, typically into four images (see Fig. 1). However, if the source is sufficiently extended, ring-like
images can be formed even if the symmetry is imperfect. The 6 cm radio map of MG 1131+0456 shows a
closed ring, while the ring breaks up at higher frequencies where the source is smaller. The ring diameter
is 2.1′′.

If the light bundles from some sources are distorted so strongly that their images appear as giant lumi-
nous arcs, one may expect many more sources behind a cluster whose images are only weakly distorted.
Although weak distortions in individual images can hardly be recognised, the net distortion averaged over
an ensemble of images can still be detected. As we shall describe in Sect. 2.3, deep optical exposures reveal
a dense population of faint galaxies on the sky. Most of these galaxies are at high redshift, thus distant, and
their image shapes can be utilised to probe the tidal gravitational field of intervening mass concentrations.
Indeed, the tidal gravitational field can be reconstructed from the coherent distortion apparent in images
of the faint galaxy population, and from that the density profile of intervening clusters of galaxies can be
inferred (see Sect. 4).

1.2 Weak Gravitational Lensing

This review deals withweak gravitational lensing. There is no generally applicable definition of weak
lensing despite the fact that it constitutes a flourishing area of research. The common aspect of all stud-
ies of weak gravitational lensing is that measurements of its effects are statistical in nature. While a single
multiply-imaged source provides information on the mass distribution of the deflector, weak lensing effects
show up only across ensembles of sources. One example was given above: The shape distribution of an
ensemble of galaxy images is changed close to a massive galaxy cluster in the foreground, because the clus-
ter’s tidal field polarises the images. We shall see later that the size distribution of the background galaxy
population is also locally changed in the neighbourhood of a massive intervening mass concentration.

Magnification and distortion effects due to weak lensing can be used to probe the statistical properties
of the matter distribution between us and an ensemble of distant sources, provided some assumptions on
the source properties can be made. For example, if astandard candle1 at high redshift is identified, its flux

1The termstandard candleis used for any class of astronomical objects whose intrinsic luminosity can be inferred independently
of the observed flux. In the simplest case, all members of the class have the same luminosity. More typically, the luminosity depends
on some other known and observable parameters, such that the luminosity can be inferred from them. The luminosity distance to any
standard candle can directly be inferred from the square root of the ratio of source luminosity and observed flux. Since the luminosity
distance depends on cosmological parameters, the geometry of the Universe can then directly be investigated. Probably the best
current candidates for standard candles are supernovae of Type Ia. They can be observed to quite high redshifts, and thus be utilised
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Figure 3: The cluster Abell 2218 hosts one of the most impressive collections of arcs. ThisHST image of
the cluster’s central region shows a pattern of strongly distorted galaxy images tangentially aligned with
respect to the cluster centre, which lies close to the bright galaxy in the upper part of this image. The frame
measures about 80′′×160′′. (courtesy of J.-P. Kneib)

can be used to estimate the magnification along its line-of-sight. It can be assumed that the orientation
of faint distant galaxies is random. Then, any coherent alignment of images signals the presence of an
intervening tidal gravitational field. As a third example, the positions on the sky of cosmic objects at vastly
different distances from us should be mutually independent. A statistical association of foreground objects
with background sources can therefore indicate the magnification caused by the foreground objects on the
background sources.

All these effects are quite subtle, or weak, and many of the current challenges in the field are obser-
vational in nature. A coherent alignment of images of distant galaxiescanbe due to an intervening tidal
gravitational field, butcould also be due to propagation effects in the Earth’s atmosphere or in the tele-
scope. A variation in the number density of background sources around a foreground objectcan be due
to a magnification effect, butcould also be due to non-uniform photometry or obscuration effects. These
potential systematic effects have to be controlled at a level well below the expected weak-lensing effects.
We shall return to this essential point at various places in this review.

1.3 Applications of Gravitational Lensing

Gravitational lensing has developed into a versatile tool for observational cosmology. There are two main
reasons:

1. The deflection angle of a light ray is determined by the gravitational field of the matter distribu-
tion along its path. According to Einstein’s theory of General Relativity, the gravitational field is in
turn determined by the stress-energy tensor of the matter distribution. For the astrophysically most
relevant case of non-relativistic matter, the latter is characterised by the density distribution alone.
Hence, the gravitational field, and thus the deflection angle, depend neither on the nature of the mat-
ter nor on its physical state. Light deflection probes the total matter density, without distinguishing
between ordinary (baryonic) matter or dark matter. In contrast to other dynamical methods for prob-
ing gravitational fields, no assumption needs to be made on the dynamical state of the matter. For
example, the interpretation of radial velocity measurements in terms of the gravitating mass requires

to estimate cosmological parameters (e.g. Riess et al. 1998).
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the applicability of the virial theorem (i.e., the physical system is assumed to be in virial equilib-
rium), or knowledge of the orbits (such as the circular orbits in disk galaxies). However, as will be
discussed in Sect. 3, lensing measures only the mass distribution projected along the line-of-sight,
and is therefore insensitive to the extent of the mass distributionalong the light rays, as long as this
extent is small compared to the distances from the observer and the source to the deflecting mass.
Keeping this in mind, mass determinations by lensing do not depend on any symmetry assumptions.

2. Once the deflection angle as a function of impact parameter is given, gravitational lensing reduces to
simple geometry. Since most lens systems involve sources (and lenses) at moderate or high redshift,
lensing can probe the geometry of the Universe. This was noted by Refsdal (1964), who pointed out
that lensing can be used to determine the Hubble constant and the cosmic density parameter. Al-
though this turned out later to be more difficult than anticipated at the time, first measurements of the
Hubble constant through lensing have been obtained with detailed models of the matter distribution
in multiple-image lens systems and the difference in light-travel time along the different light paths
corresponding to different images of the source (e.g., Kundić et al. 1997; Schechter et al. 1997;
Biggs et al. 1999). Since the volume element per unit redshift interval and unit solid angle also
depends on the geometry of space-time, so does the number of lenses therein. Hence, the lensing
probability for distant sources depends on the cosmological parameters (e.g., Press & Gunn 1973).
Unfortunately, in order to derive constraints on the cosmological model with this method, one needs
to know the evolution of the lens population with redshift. Nevertheless, in some cases, significant
constraints on the cosmological parameters (Kochanek 1993, 1996; Maoz & Rix 1993; Bartelmann
et al. 1998; Falco et al. 1998), and on the evolution of the lens population (Mao & Kochanek 1994)
have been derived from multiple-image and arc statistics. (See also the review by Chiba & Futamase
1999.)

The possibility to directly investigate the dark-matter distribution led to substantial results over recent
years. Constraints on the size of the dark-matter halos of spiral galaxies were derived (e.g., Brainerd
et al. 1996), the presence of dark-matter halos in elliptical galaxies was demonstrated (e.g., Maoz &
Rix 1993; Griffiths et al. 1996), and the projected total mass distribution in many cluster of galaxies
was mapped (e.g., Kneib et al. 1996; Hoekstra et al. 1998; Kaiser et al. 1998). These results directly
impact on our understanding of structure formation, supporting hierarchical structure formation in cold
dark matter (CDM) models. Constraints on the nature of dark matter were also obtained. Compact dark-
matter objects, such as black holes or brown dwarfs, cannot be very abundant in the Universe, because
otherwise they would lead to observable lensing effects (e.g., Schneider 1993; Dalcanton et al. 1994).
Galactic microlensing experiments constrained the density and typical mass scale of massive compact halo
objects in our Galaxy (see Paczyński 1996, Roulet & Mollerach 1997 and Mao 2000 for reviews). We refer
the reader to the reviews by Blandford & Narayan (1992), Schneider (1996a) and Narayan & Bartelmann
(1999) for a detailed account of the cosmological applications of gravitational lensing.

We shall concentrate almost entirely on weak gravitational lensing here. Hence, the flourishing fields
of multiple-image systems and their interpretation, Galactic microlensing and its consequences for under-
standing the nature of dark matter in the halo of our Galaxy, and the detailed investigations of the mass
distribution in the inner parts of galaxy clusters through arcs, arclets, and multiply imaged background
galaxies, will not be covered in this review. In addition to the references given above, we would like to
point the reader to Refsdal & Surdej (1994), Fort & Mellier (1994), Wu (1996), and Hattori et al. (1999) for
more recent reviews on various aspects of gravitational lensing, to Mellier (1999) for a very recent review
on weak lensing, and to the monograph (Schneider et al. 1992) for a detailed account of the theory and
applications of gravitational lensing.

1.4 Structure of this Review

Many aspects of weak gravitational lensing are intimately related to the cosmological model and to the
theory of structure formation in the Universe. We therefore start the review by giving some cosmological
background in Sect. 2. After summarising Friedmann-Lemaı̂tre-Robertson-Walker models, we sketch the
theory of structure formation, introduce astrophysical objects like QSOs, galaxies, and galaxy clusters, and
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finish the Section with a general discussion of correlation functions, power spectra, and their projections.
Gravitational light deflection in general is the subject of Sect. 3, and the specialisation to weak lensing
is described in Sect. 4. One of the main aspects there is how weak lensing effects can be quantified and
measured. The following two sections describe the theory of weak lensing by galaxy clusters (Sect. 5)
and cosmological mass distributions (Sect. 6). Apparent correlations between background QSOs and fore-
ground galaxies due to the magnification bias caused by large-scale matter distributions are the subject
of Sect. 7. Weak lensing effects of foreground galaxies on background galaxies are reviewed in Sect. 8,
and Sect. 9 finally deals with weak lensing of the most distant and most extended source possible, i.e. the
Cosmic Microwave Background. We present a brief summary and an outlook in Sect. 10.

We use standard astronomical units throughout: 1M� = 1solar mass= 2× 1033g; 1Mpc =
1megaparsec= 3.1×1024cm.
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2 Cosmological Background

We review in this section those aspects of the standard cosmological model which are relevant for our
further discussion of weak gravitational lensing. This standard model consists of a description for the
cosmological background which is a homogeneous and isotropic solution of the field equations of General
Relativity, and a theory for the formation of structure.

The background model is described by the Robertson-Walker metric (Robertson 1935; Walker 1935), in
which hypersurfaces of constant time are homogeneous and isotropic three-spaces, either flat or curved, and
change with time according to a scale factor which depends on time only. The dynamics of the scale factor
is determined by two equations which follow from Einstein’s field equations given the highly symmetric
form of the metric.

Current theories of structure formation assume that structure grows via gravitational instability from
initial seed perturbations whose origin is yet unclear. Most common hypotheses lead to the prediction that
the statistics of the seed fluctuations is Gaussian. Their amplitude is low for most of their evolution so
that linear perturbation theory is sufficient to describe their growth until late stages. For general references
on the cosmological model and on the theory of structure formation, cf. Weinberg (1972), Misner et al.
(1973), Peebles (1980), Börner (1988), Padmanabhan (1993), Peebles (1993), and Peacock (1999).

2.1 Friedmann-Lemâıtre Cosmological Models

2.1.1 Metric

Two postulates are fundamental to the standard cosmological model, which are:

1. When averaged over sufficiently large scales, there exists a mean motion of radiation and matter in
the Universe with respect to which all averaged observable properties are isotropic.

2. All fundamental observers, i.e. imagined observers which follow this mean motion, experience the
same history of the Universe, i.e. the same averaged observable properties, provided they set their
clocks suitably.Such a universe is calledobserver-homogeneous.

General Relativity describes space-time as a four-dimensional manifold whose metric tensorgαβ is
considered as a dynamical field. The dynamics of the metric is governed by Einstein’s field equations,
which relate the Einstein tensor to the stress-energy tensor of the matter contained in space-time. Two
events in space-time with coordinates differing by dxα are separated by ds, with ds2 = gαβdxαdxβ. The
eigentime(proper time) of an observer who travels by ds changes byc−1ds. Greek indices run over 0. . .3
and Latin indices run over the spatial indices 1. . .3 only.

The two postulates stated above considerably constrain the admissible form of the metric tensor. Spatial
coordinates which are constant for fundamental observers are called comoving coordinates. In these coor-
dinates, the mean motion is described by dxi = 0, and hence ds2 = g00dt2. If we require that theeigentime
of fundamental observers equal the cosmic time, this impliesg00 = c2.

Isotropy requires that clocks can be synchronised such that the space-time components of the metric
tensor vanish,g0i = 0. If this was impossible, the components ofg0i identified one particular direction in
space-time, violating isotropy. The metric can therefore be written

ds2 = c2dt2 +gi j dxidx j , (1)

wheregi j is the metric of spatial hypersurfaces. In order not to violate isotropy, the spatial metric can only
isotropically contract or expand with a scale functiona(t) which must be a function of time only, because
otherwise the expansion would be different at different places, violating homogeneity. Hence the metric
further simplifies to

ds2 = c2dt2−a2(t)dl2 , (2)

where dl is the line element of the homogeneous and isotropic three-space. A special case of the metric (2)
is the Minkowski metric, for which dl is the Euclidean line element anda(t) is a constant. Homogeneity
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also implies that all quantities describing the matter content of the Universe, e.g. density and pressure, can
be functions of time only.

The spatial hypersurfaces whose geometry is described by dl2 can either be flat or curved. Isotropy only
requires them to be spherically symmetric, i.e. spatial surfaces of constant distance from an arbitrary point
need to be two-spheres. Homogeneity permits us to choose an arbitrary point as coordinate origin. We can
then introduce two anglesθ,φ which uniquely identify positions on the unit sphere around the origin, and
a radial coordinatew. The most general admissible form for the spatial line element is then

dl2 = dw2 + f 2
K(w)

(
dφ2 +sin2 θdθ2)≡ dw2 + f 2

K(w)dω2 . (3)

Homogeneity requires that the radial functionfK(w) is either a trigonometric, linear, or hyperbolic function
of w, depending on whether the curvatureK is positive, zero, or negative. Specifically,

fK(w) =

 K−1/2sin(K1/2w) (K > 0)
w (K = 0)
(−K)−1/2sinh[(−K)1/2w] (K < 0)

. (4)

Note that fK(w) and thus|K|−1/2 have the dimension of a length. If we define the radiusr of the two-
spheres byfK(w)≡ r, the metric dl2 takes the alternative form

dl2 =
dr2

1−Kr2 + r2dω2 . (5)

2.1.2 Redshift

Due to the expansion of space, photons are redshifted while they propagate from the source to the ob-
server. Consider a comoving source emitting a light signal atte which reaches a comoving observer at
the coordinate originw = 0 at timeto. Since ds= 0 for light, a backward-directed radial light ray propa-
gates according to|cdt|= adw, from the metric. The (comoving) coordinate distance between source and
observer is constant by definition,

weo =
∫ e

o
dw =

∫ to(te)

te

cdt
a

= constant, (6)

and thus in particular the derivative ofweo with respect tote is zero. It then follows from eq. (6)

dto
dte

=
a(to)
a(te)

. (7)

Identifying the inverse time intervals(dte,o)−1 with the emitted and observed light frequenciesνe,o, we can
write

dto
dte

=
νe

νo
=

λo

λe
. (8)

Since the redshiftz is defined as the relative change in wavelength, or 1+z= λoλ−1
e , we find

1+z=
a(to)
a(te)

. (9)

This shows that light is redshifted by the amount by which the Universe has expanded between emission
and observation.

2.1.3 Expansion

To complete the description of space-time, we need to know how the scale functiona(t) depends on time,
and how the curvatureK depends on the matter which fills space-time. That is, we ask for the dynamics of
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the space-time. Einstein’s field equations relate the Einstein tensorGαβ to the stress-energy tensorTαβ of
the matter,

Gαβ =
8πG
c2 Tαβ + Λgαβ . (10)

The second term proportional to the metric tensorgαβ is a generalisation introduced by Einstein to allow
static cosmological solutions of the field equations.Λ is called the cosmological constant. For the highly
symmetric form of the metric given by (2) and (3), Einstein’s equations imply thatTαβ has to have the form
of the stress-energy tensor of a homogeneous perfect fluid, which is characterised by its densityρ(t) and
its pressurep(t). Matter density and pressure can only depend on time because of homogeneity. The field
equations then simplify to the two independent equations(

ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λ
3

(11)

and
ä
a

=−4
3

πG

(
ρ +

3p
c2

)
+

Λ
3
. (12)

The scale factora(t) is determined once its value at one instant of time is fixed. We choosea = 1 at the
present epocht0. Equation (11) is calledFriedmann’s equation(Friedmann 1922, 1924). The two equations
(11) and (12) can be combined to yield theadiabatic equation

d
dt

[
a3(t)ρ(t)c2]+ p(t)

da3(t)
dt

= 0 , (13)

which has an intuitive interpretation. The first terma3ρ is proportional to the energy contained in a fixed
comoving volume, and hence the equation states that the change in ‘internal’ energy equals the pressure
times the change in proper volume. Hence eq. (13) is the first law of thermodynamics in the cosmological
context.

A metric of the form given by eqs. (2), (3), and (4) is called the Robertson-Walker metric. If its scale
factor a(t) obeys Friedmann’s equation (11) and the adiabatic equation (13), it is called the Friedmann-
Lemâıtre-Robertson-Walker metric, or the Friedmann-Lemaı̂tre metric for short. Note that eq. (12) can
also be derived from Newtonian gravity except for the pressure term in (12) and the cosmological constant.
Unlike in Newtonian theory, pressure acts as a source of gravity in General Relativity.

2.1.4 Parameters

The relative expansion rate ˙aa−1 ≡ H is called theHubble parameter, and its value at the present epoch
t = t0 is theHubble constant, H(t0)≡ H0. It has the dimension of an inverse time. The value ofH0 is still
uncertain. Current measurements roughly fall into the rangeH0 = (50−80)km s−1 Mpc−1 (see Freedman
1996 for a review), and the uncertainty inH0 is commonly expressed asH0 = 100hkm s−1 Mpc−1, with
h = (0.5−0.8). Hence

H0≈ 3.2×10−18hs−1≈ 1.0×10−10hyr−1 . (14)

The time scale for the expansion of the Universe is the inverse Hubble constant, orH−1
0 ≈ 1010h−1years.

The combination
3H2

0

8πG
≡ ρcr≈ 1.9×10−29h2gcm−3 (15)

is thecritical densityof the Universe, and the densityρ0 in units ofρcr is thedensity parameterΩ0,

Ω0 =
ρ0

ρcr
. (16)

If the matter density in the universe is critical,ρ0 = ρcr or Ω0 = 1, and if the cosmological constant vanishes,
Λ = 0, spatial hypersurfaces are flat,K = 0, which follows from (11) and will become explicit in eq. (30)
below. We further define

ΩΛ ≡
Λ

3H2
0

. (17)
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Thedeceleration parameter q0 is defined by

q0 =− äa
ȧ2 (18)

at t = t0.

2.1.5 Matter Models

For a complete description of the expansion of the Universe, we need an equation of statep= p(ρ), relating
the pressure to the energy density of the matter. Ordinary matter, which is frequently calleddust in this
context, hasp� ρc2, while p = ρc2/3 for radiation or other forms of relativistic matter. Inserting these
expressions into eq. (13), we find

ρ(t) = a−n(t)ρ0 , (19)

with

n =
{

3 for dust,p = 0
4 for relativistic matter,p = ρc2/3

. (20)

The energy density of relativistic matter therefore drops more rapidly with time than that of ordinary matter.

2.1.6 Relativistic Matter Components

There are two obvious candidates for relativistic matter today, photons and neutrinos. The energy den-
sity contained in photons today is determined by the temperature of the Cosmic Microwave Background,
TCMB = 2.73K (Fixsen et al. 1996). Since the CMB has an excellent black-body spectrum, its energy
density is given by the Stefan-Boltzmann law,

ρCMB =
1
c2

π2

15
(kTCMB)4

(~c)3 ≈ 4.5×10−34gcm−3 . (21)

In terms of the cosmic density parameterΩ0 [eq. (16)], the cosmic density contributed by the photon
background is

ΩCMB,0 = 2.4×10−5h−2 . (22)

Like photons, neutrinos were produced in thermal equilibrium in the hot early phase of the Universe.
Interacting weakly, they decoupled from the cosmic plasma when the temperature of the Universe was
kT ≈ 1MeV because later the time-scale of their leptonic interactions became larger than the expansion
time-scale of the Universe, so that equilibrium could no longer be maintained. When the temperature of the
Universe dropped tokT≈ 0.5MeV, electron-positron pairs annihilated to produceγ rays. The annihilation
heated up the photons but not the neutrinos which had decoupled earlier. Hence the neutrino temperature
is lower than the photon temperature by an amount determined by entropy conservation. The entropySe of
the electron-positron pairs was dumped completely into the entropy of the photon backgroundSγ. Hence,

(Se+Sγ)before= (Sγ)after , (23)

where “before” and “after” refer to the annihilation time. Ignoring constant factors, the entropy per particle
species isS∝ gT3, whereg is the statistical weight of the species. For bosonsg = 1, and for fermions
g = 7/8 per spin state. Before annihilation, we thus havegbefore = 4 · 7/8+ 2 = 11/2, while after the
annihilationg = 2 because only photons remain. From eq. (23),(

Tafter

Tbefore

)3

=
11
4
. (24)

After the annihilation, the neutrino temperature is therefore lower than the photon temperature by the factor
(11/4)1/3. In particular, the neutrino temperature today is

Tν,0 =
(

4
11

)1/3

TCMB = 1.95K . (25)
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Although neutrinos have long been out of thermal equilibrium, their distribution function remained un-
changed since they decoupled, except that their temperature gradually dropped in the course of cosmic
expansion. Their energy density can thus be computed from a Fermi-Dirac distribution with temperature
Tν, and be converted to the equivalent cosmic density parameter as for the photons. The result is

Ων,0 = 2.8×10−6h−2 (26)

per neutrino species.
Assuming three relativistic neutrino species, the total density parameter in relativistic matter today is

ΩR,0 = ΩCMB,0 +3×Ων,0 = 3.2×10−5h−2 . (27)

Since the energy density in relativistic matter is almost five orders of magnitude less than the energy density
of ordinary matter today ifΩ0 is of order unity, the expansion of the Universe today is matter-dominated,
or ρ = a−3(t)ρ0. The energy densities of ordinary and relativistic matter were equal when the scale factor
a(t) was

aeq =
ΩR,0

Ω0
= 3.2×10−5 Ω−1

0 h−2 , (28)

and the expansion was radiation-dominated at yet earlier times,ρ = a−4ρ0. The epoch of equality of matter
and radiation density will turn out to be important for the evolution of structure in the Universe discussed
below.

2.1.7 Spatial Curvature and Expansion

With the parameters defined previously, Friedmann’s equation (11) can be written

H2(t) = H2
0

[
a−4(t)ΩR,0 +a−3(t)Ω0−a−2(t)

Kc2

H2
0

+ ΩΛ

]
. (29)

SinceH(t0)≡ H0, andΩR,0�Ω0, eq. (29) implies

K =
(

H0

c

)2

(Ω0 + ΩΛ−1) , (30)

and eq. (29) becomes

H2(t) = H2
0

[
a−4(t)ΩR,0 +a−3(t)Ω0 +a−2(t)(1−Ω0−ΩΛ)+ ΩΛ

]
. (31)

The curvature of spatial hypersurfaces is therefore determined by the sum of the density contributions from
matter,Ω0, and from the cosmological constant,ΩΛ. If Ω0 + ΩΛ = 1, space is flat, and it is closed or
hyperbolic if Ω0 + ΩΛ is larger or smaller than unity, respectively. The spatial hypersurfaces of a low-
density universe are therefore hyperbolic, while those of a high-density universe are closed [cf. eq. (4)]. A
Friedmann-Lemâıtre model universe is thus characterised by four parameters: the expansion rate at present
(or Hubble constant)H0, and the density parameters in matter, radiation, and the cosmological constant.

Dividing eq. (12) by eq. (11), using eq. (30), and settingp= 0, we obtain for the deceleration parameter
q0

q0 =
Ω0

2
−ΩΛ . (32)

The age of the universe can be determined from eq. (31). Since dt = daȧ−1 = da(aH)−1, we have,
ignoringΩR,0,

t0 =
1

H0

∫ 1

0
da
[
a−1Ω0 +(1−Ω0−ΩΛ)+a2ΩΛ

]−1/2
. (33)

It was assumed in this equation thatp = 0 holds for all timest, while pressure is not negligible at early
times. The corresponding error, however, is very small because the universe spends only a very short time
in the radiation-dominated phase wherep> 0.
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Figure 4: Cosmic aget0 in units ofH−1
0 as a function ofΩ0, for ΩΛ = 0 (solid curve) andΩΛ = 1−Ω0

(dashed curve).

Figure 4 showst0 in units ofH−1
0 as a function ofΩ0, for ΩΛ = 0 (solid curve) andΩΛ = 1−Ω0 (dashed

curve). The model universe is older for lowerΩ0 and higherΩΛ because the deceleration decreases with
decreasingΩ0 and the acceleration increases with increasingΩΛ.

In principle, ΩΛ can have either sign. We have restricted ourselves in Fig. 4 to non-negativeΩΛ
because the cosmological constant is usually interpreted as the energy density of the vacuum, which is
positive semi-definite.

The time evolution (31) of the Hubble functionH(t) allows one to determine the dependence ofΩ and
ΩΛ on the scale functiona. For a matter-dominated universe, we find

Ω(a) =
8πG

3H2(a)
ρ0a−3 =

Ω0

a+ Ω0(1−a)+ ΩΛ(a3−a)
,

ΩΛ(a) =
Λ

3H2(a)
=

ΩΛ a3

a+ Ω0(1−a)+ ΩΛ(a3−a)
. (34)

These equations show that, whatever the values ofΩ0 andΩΛ are at the present epoch,Ω(a)→ 1 andΩΛ→
0 for a→ 0. This implies that for sufficiently early times, all matter-dominated Friedmann-Lemaı̂tre model
universes can be described by Einstein-de Sitter models, for whichK = 0 andΩΛ = 0. Fora� 1, the right-
hand side of Friedmann’s equation (31) is therefore dominated by the matter and radiation terms because
they contain the strongest dependences ona−1. The Hubble functionH(t) can then be approximated by

H(t) = H0
[
ΩR,0a−4(t)+ Ω0a−3(t)

]1/2
. (35)

Using the definition ofaeq, a−4
eq ΩR,0 = a−3

eq Ω0 [cf. eq. (28)], eq. (35) can be written

H(t) = H0 Ω1/2
0 a−3/2

(
1+

aeq

a

)1/2
. (36)

Hence,

H(t) = H0 Ω1/2
0

{
a1/2

eq a−2 (a� aeq)
a−3/2 (aeq� a� 1)

. (37)

Likewise, the expression for the cosmic time reduces to

t(a) =
2

3H0
Ω−1/2

0

[
a3/2

(
1−2

aeq

a

) (
1+

aeq

a

)1/2
+2a3/2

eq

]
, (38)
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or

t(a) =
1

H0
Ω−1/2

0

{
1
2 a−1/2

eq a2 (a� aeq)
2
3 a3/2 (aeq� a� 1)

. (39)

Equation (36) is called the Einstein-de Sitter limit of Friedmann’s equation. Where not mentioned other-
wise, we consider in the following only cosmic epochs at times much later thanteq, i.e., whena� aeq,
where the Universe is dominated by dust, so that the pressure can be neglected,p = 0.

2.1.8 Necessity of a Big Bang

Starting froma = 1 at the present epoch and integrating Friedmann’s equation (11) back in time shows that
there are combinations of the cosmic parameters such thata> 0 at all times. Such models would have no
Big Bang. The necessity of a Big Bang is usually inferred from the existence of the cosmic microwave
background, which is most naturally explained by an early, hot phase of the Universe. Börner & Ehlers
(1988) showed that two simple observational facts suffice to show that the Universe must have gone through
a Big Bang, if it is properly described by the class of Friedmann-Lemaı̂tre models. Indeed, the facts that
there are cosmological objects at redshiftsz> 4, and that the cosmic density parameter of non-relativistic
matter, as inferred from observed galaxies and clusters of galaxies isΩ0 > 0.02, exclude models which
havea(t)> 0 at all times. Therefore, if we describe the Universe at large by Friedmann-Lemaı̂tre models,
we must assume a Big Bang, ora = 0 at some time in the past.

2.1.9 Distances

The meaning of “distance” is no longer unique in a curved space-time. In contrast to the situation in
Euclidean space, distance definitions in terms of different measurement prescriptions lead to different dis-
tances. Distance measures are therefore defined in analogy to relations between measurable quantities in
Euclidean space. We define here four different distance scales, the proper distance, the comoving distance,
the angular-diameter distance, and the luminosity distance.

Distance measures relate an emission event and an observation event on two separate geodesic lines
which fall on a common light cone, either the forward light cone of the source or the backward light
cone of the observer. They are therefore characterised by the timest2 andt1 of emission and observation
respectively, and by the structure of the light cone. These times can uniquely be expressed by the values
a2 = a(t2) anda1 = a(t1) of the scale factor, or by the redshiftsz2 andz1 corresponding toa2 anda1.
We choose the latter parameterisation because redshifts are directly observable. We also assume that the
observer is at the origin of the coordinate system.

The proper distance Dprop(z1,z2) is the distance measured by the travel time of a light ray which
propagates from a source atz2 to an observer atz1 < z2. It is defined by dDprop = −cdt, hence
dDprop = −cdaȧ−1 = −cda(aH)−1. The minus sign arises because, due to the choice of coordinates cen-
tred on the observer, distances increase away from the observer, while the timet and the scale factora
increase towards the observer. We get

Dprop(z1,z2) =
c

H0

∫ a(z1)

a(z2)

[
a−1Ω0 +(1−Ω0−ΩΛ)+a2ΩΛ

]−1/2
da . (40)

The comoving distance Dcom(z1,z2) is the distance on the spatial hyper-surfacet = t0 between the
world-lines of a source and an observer comoving with the cosmic flow. Due to the choice of coordinates,
it is the coordinate distance between a source atz2 and an observer atz1, dDcom= dw. Since light rays prop-
agate with ds= 0, we havecdt =−adw from the metric, and therefore dDcom =−a−1cdt =−cda(aȧ)−1 =
−cda(a2H)−1. Thus

Dcom(z1,z2) =
c

H0

∫ a(z1)

a(z2)

[
aΩ0 +a2(1−Ω0−ΩΛ)+a4ΩΛ

]−1/2
da

= w(z1,z2) . (41)
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The angular-diameter distance Dang(z1,z2) is defined in analogy to the relation in Euclidean space
between the physical cross sectionδA of an object atz2 and the solid angleδω that it subtends for an
observer atz1, δωD2

ang= δA. Hence,

δA

4πa2(z2) f 2
K [w(z1,z2)]

=
δω
4π

, (42)

wherea(z2) is the scale factor at emission time andfK [w(z1,z2)] is the radial coordinate distance between
the observer and the source. It follows

Dang(z1,z2) =
(

δA
δω

)1/2

= a(z2) fK [w(z1,z2)] . (43)

According to the definition of the comoving distance, the angular-diameter distance therefore is

Dang(z1,z2) = a(z2) fK [Dcom(z1,z2)] . (44)

The luminosity distance Dlum(a1,a2) is defined by the relation in Euclidean space between the lumi-
nosityL of an object atz2 and the fluxSreceived by an observer atz1. It is related to the angular-diameter
distance through

Dlum(z1,z2) =
[

a(z1)
a(z2)

]2

Dang(z1,z2) =
a(z1)2

a(z2)
fK [Dcom(z1,z2)] . (45)

The first equality in (45), which is due to Etherington (1933), is valid in arbitrary space-times. It is phys-
ically intuitive because photons are redshifted bya(z1)a(z2)−1, their arrival times are delayed by another
factor a(z1)a(z2)−1, and the area of the observer’s sphere on which the photons are distributed grows
between emission and absorption in proportion to[a(z1)a(z2)−1]2. This accounts for a total factor of
[a(z1)a(z2)−1]4 in the flux, and hence for a factor of[a(z1)a(z2)−1]2 in the distance relative to the angular-
diameter distance.

We plot the four distancesDprop, Dcom, Dang, andDlum for z1 = 0 as a function ofz in Fig. 5.

Figure 5: Four distance measures are plotted as a function of source redshift for two cosmological models
and an observer at redshift zero. These are the proper distanceDprop (1, solid line), the comoving distance
Dcom (2, dotted line), the angular-diameter distanceDang (3, short-dashed line), and the luminosity distance
Dlum (4, long-dashed line).

The distances are larger for lower cosmic density and higher cosmological constant. Evidently, they
differ by a large amount at high redshift. For small redshifts,z� 1, they all follow the Hubble law,

distance=
cz
H0

+O(z2) . (46)
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2.1.10 The Einstein-de Sitter Model

In order to illustrate some of the results obtained above, let us now specialise to a model universe with
a critical density of dust,Ω0 = 1 andp = 0, and with zero cosmological constant,ΩΛ = 0. Friedmann’s
equation then reduces toH(t) = H0a−3/2, and the age of the Universe becomest0 = 2(3H0)−1. The distance
measures are

Dprop(z1,z2) =
2c

3H0

[
(1+z1)−3/2− (1+z2)−3/2

]
(47)

Dcom(z1,z2) =
2c
H0

[
(1+z1)−1/2− (1+z2)−1/2

]
Dang(z1,z2) =

2c
H0

1
1+z2

[
(1+z1)−1/2− (1+z2)−1/2

]
Dlum(z1,z2) =

2c
H0

1+z2

(1+z1)2

[
(1+z1)−1/2− (1+z2)−1/2

]
.

2.2 Density Perturbations

The standard model for the formation of structure in the Universe assumes that there were small fluctuations
at some very early initial time, which grew by gravitational instability. Although the origin of the seed
fluctuations is yet unclear, they possibly originated from quantum fluctuations in the very early Universe,
which were blown up during a later inflationary phase. The fluctuations in this case are uncorrelated and the
distribution of their amplitudes is Gaussian. Gravitational instability leads to a growth of the amplitudes
of the relative density fluctuations. As long as the relative density contrast of the matter fluctuations is
much smaller than unity, they can be considered as small perturbations of the otherwise homogeneous and
isotropic background density, and linear perturbation theory suffices for their description.

The linear theory of density perturbations in an expanding universe is generally a complicated issue
because it needs to be relativistic (e.g. Lifshitz 1946; Bardeen 1980). The reason is that perturbations on
any length scale are comparable to or larger than the size of the horizon2 at sufficiently early times, and
then Newtonian theory ceases to be applicable. In other words, since the horizon scale is comparable to
the curvature radius of space-time, Newtonian theory fails for larger-scale perturbations due to non-zero
spacetime curvature. The main features can nevertheless be understood by fairly simple reasoning. We
shall not present a rigorous mathematical treatment here, but only quote the results which are relevant for
our later purposes. For a detailed qualitative and quantitative discussion, we refer the reader to the excellent
discussion in chapter 4 of the book by Padmanabhan (1993).

2.2.1 Horizon Size

The size of causally connected regions in the Universe is called thehorizon size. It is given by the distance
by which a photon can travel in the timet since the Big Bang. Since the appropriate time scale is provided
by the inverse Hubble parameterH−1(a), the horizon size isd′H = cH−1(a), and thecomovinghorizon size
is

dH =
c

aH(a)
=

c
H0

Ω−1/2
0 a1/2

(
1+

aeq

a

)−1/2
, (48)

where we have inserted the Einstein-de Sitter limit (36) of Friedmann’s equation. The lengthcH−1
0 =

3h−1Gpc is called theHubble radius. We shall see later that the horizon size ataeq plays a very important
rôle for structure formation. Insertinga = aeq into eq. (48), yields

dH(aeq) =
c√
2H0

Ω−1/2
0 a1/2

eq ≈ 12(Ω0h2)−1Mpc , (49)

whereaeq from eq. (28) has been inserted.
2In this context, the size of the horizon is the distancect by which light can travel in the timet since the big bang.
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2.2.2 Linear Growth of Density Perturbations

We adopt the commonly held view that the density of the Universe is dominated by weakly interacting dark
matter at the relatively late times which are relevant for weak gravitational lensing,a� aeq. Dark-matter
perturbations are characterised by the density contrast

δ(~x,a) =
ρ(~x,a)− ρ̄(a)

ρ̄(a)
, (50)

whereρ̄ = ρ0a−3 is the average cosmic density. Relativistic and non-relativistic perturbation theory shows
that linear density fluctuations, i.e. perturbations withδ� 1, grow like

δ(a) ∝ an−2 =
{

a2 beforeaeq

a afteraeq
(51)

as long as the Einstein-de Sitter limit holds. For later times,a� aeq, when the Einstein-de Sitter limit no
longer applies ifΩ0 6= 1 or ΩΛ 6= 0, the linear growth of density perturbations is changed according to

δ(a) = δ0a
g′(a)
g′(1)

≡ δ0ag(a) , (52)

whereδ0 is the density contrast linearly extrapolated to the present epoch, and the density-dependent
growth functiong′(a) is accurately fit by (Carroll et al. 1992)

g′(a;Ω0,ΩΛ) =
5
2

Ω(a)
[

Ω4/7(a)−ΩΛ(a)+
(

1+
Ω(a)

2

)(
1+

ΩΛ(a)
70

)]−1

. (53)

The dependence ofΩ andΩΛ on the scale factora is given in eqs. (34). The growth functionag(a;Ω0,ΩΛ)
is shown in Fig. 6 for a variety of parametersΩ0 andΩΛ.

The cosmic microwave background reveals relative temperature fluctuations of order 10−5 on large
scales. By the Sachs-Wolfe effect (Sachs & Wolfe 1967), these temperature fluctuations reflect density fluc-
tuations of the same order of magnitude. The cosmic microwave background originated ata≈ 10−3� aeq,
well after the Universe became matter-dominated. Equation (51) then implies that the density fluctuations
today, expected from the temperature fluctuations ata≈ 10−3, should only reach a level of 10−2. Instead,
structures (e.g. galaxies) withδ� 1 are observed. How can this discrepancy be resolved? The cosmic
microwave background displays fluctuations in the baryonic matter component only. If there is an addi-
tional matter component that only couples through weak interactions, fluctuations in that component could
grow as soon as it decoupled from the cosmic plasma, well before photons decoupled from baryons to
set the cosmic microwave background free. Such fluctuations could therefore easily reach the amplitudes
observed today, and thereby resolve the apparent mismatch between the amplitudes of the temperature
fluctuations in the cosmic microwave background and the present cosmic structures. This is one of the
strongest arguments for the existence of a dark matter component in the Universe.

2.2.3 Suppression of Growth

It is convenient to decompose the density contrastδ into Fourier modes. In linear perturbation theory,
individual Fourier components evolve independently. A perturbation of (comoving) wavelengthλ is said
to “enter the horizon” whenλ = dH(a). If λ< dH(aeq), the perturbation enters the horizon while radiation
is still dominating the expansion. Untilaeq, the expansion time-scale,texp = H−1, is determined by the
radiation densityρR, which is shorter than the collapse time-scale of the dark matter,tDM :

texp∼ (GρR)−1/2 < (GρDM)−1/2∼ tDM . (54)

In other words, the fast radiation-driven expansion prevents dark-matter perturbations from collapsing.
Light can only cross regions that are smaller than the horizon size. The suppression of growth due to
radiation is therefore restricted to scales smaller than the horizon, and larger-scale perturbations remain
unaffected. This explains why the horizon size ataeq, dH(aeq), sets an important scale for structure growth.
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Figure 6: The growth functionag(a) ≡ ag′(a)/g′(1) given in eqs. (52) and (53) forΩ0 between 0.2 and
1.0 in steps of 0.2. Top panel:ΩΛ = 0; bottom panel:ΩΛ = 1−Ω0. The growth rate is constant for the
Einstein-de Sitter model (Ω0 = 1, ΩΛ = 0), while it is higher fora� 1 and lower fora≈ 1 for low-Ω0

models. Consequently, structure forms earlier in low- than in high-Ω0 models.

Figure 7 illustrates the growth of a perturbation withλ < dH(aeq), that is small enough to enter the
horizon ataenter< aeq. It can be read off from the figure that such perturbations are suppressed by the
factor

fsup=
(

aenter

aeq

)2

. (55)

It remains to be evaluated at what timeaentera density perturbation with comoving wavelengthλ enters
the horizon. The condition is

λ = dH(aenter) =
c

aenterH(aenter)
. (56)

Well in the Einstein-de Sitter regime, the Hubble parameter is given by eq. (37). Inserting that expression
into (56) yields

λ ∝
{

aenter (aenter� aeq)
a1/2

enter (aeq� aenter� 1)
. (57)

Let nowk = λ−1 be the wave number of the perturbation, andk0 = d−1
H (aeq) the wave number correspond-

ing to the horizon size ataeq. The suppression factor (55) can then be written

fsup=
(

k0

k

)2

. (58)

From eq. (49),
k0≈ 0.083(Ω0h2)Mpc−1≈ 250(Ω0h) (Hubble radii)−1 . (59)
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Figure 7: Sketch illustrating the suppression of structure growth during the radiation-dominated phase. The
perturbation grows∝ a2 beforeaeq, and∝ a thereafter. If the perturbation is smaller than the horizon ataeq,
it enters the horizon ataenter< aeq while radiation is still dominating. The rapid radiation-driven expansion
prevents the perturbation from growing further. Hence it stalls untilaeq. By then, its amplitude is smaller
by fsup= (aenter/aeq)2 than it would be without suppression.

2.2.4 Density Power Spectrum

The assumed Gaussian density fluctuationsδ(~x) at the comoving position~x can completely be characterised
by their power spectrumPδ(k), which can be defined by (see Sect. 2.4)〈

δ̂(~k)δ̂∗(~k′)
〉

= (2π)3 δD(~k−~k′)Pδ(k) , (60)

whereδ̂(~k) is the Fourier transform ofδ, and the asterisk denotes complex conjugation. Strictly speaking,
the Fourier decomposition is valid only in flat space. However, at early times space is flat in any cosmolog-
ical model, and at late times the interesting scalesk−1 of the density perturbations are much smaller than
the curvature radius of the Universe. Hence, we can apply Fourier decomposition here.

Consider now the primordial perturbation spectrum at some very early time,Pi(k) = |δ̂2
i (k)|. Since the

density contrast grows asδ ∝ an−2 [eq. (51)], the spectrum grows asPδ(k) ∝ a2(n−2). At aenter, the spectrum
has therefore changed to

Penter(k) ∝ a2(n−2)
enter Pi(k) ∝ k−4Pi(k) . (61)

where eq. (57) was used fork� k0.
It is commonly assumed that the total power of the density fluctuations ataenter should be scale-

invariant. This impliesk3Penter(k) = const., or Penter(k) ∝ k−3. Accordingly, the primordial spectrum
has to scale withk asPi(k) ∝ k. Thisscale-invariantspectrum is called theHarrison-Zel’dovichspectrum
(Harrison 1970; Peebles & Yu 1970; Zel’dovich 1972). Combining that with the suppression of small-scale
modes (58), we arrive at

Pδ(k) ∝
{

k for k� k0

k−3 for k� k0
. (62)

An additional complication arises when the dark matter consists of particles moving with a velocity
comparable to the speed of light. In order to keep them gravitationally bound, density perturbations then
have to have a certain minimum mass, or equivalently a certain minimum size. All perturbations smaller
than that size are damped away by free streaming of particles. Consequently, the density perturbation
spectrum of such particles has an exponential cut-off at largek. This clarifies the distinction between
hot andcold dark matter: Hot dark matter (HDM) consists of fast particles that damp away small-scale
perturbations, while cold dark matter (CDM) particles are slow enough to cause no significant damping.
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2.2.5 Normalisation of the Power Spectrum

Apart from the shape of the power spectrum, its normalisation has to be fixed. Several methods are available
which usually yield different answers:

1. Normalisation by microwave-background anisotropies: The COBE satellite has measured fluctua-
tions in the temperature of the microwave sky at therms level of ∆T/T ∼ 1.3×10−5 at an angular
scale of∼ 7◦ (Banday et al. 1997). Adopting a shape for the power spectrum, these fluctuations can
be translated into an amplitude forPδ(k). Due to the large angular scale of the measurement, this
kind of amplitude determination specifies the amplitude on large physical scales (smallk) only. In
addition, microwave-background fluctuations measure the amplitude of scalarand tensor perturba-
tion modes, while the growth of density fluctuations is determined by the fluctuation amplitude of
scalar modes only.

2. Normalisation by the local variance of galaxy counts, pioneered by Davis & Peebles (1983): Galax-
ies are supposed to be biased tracers of underlying dark-matter fluctuations (Kaiser 1984; Bardeen
et al. 1986; White et al. 1987). By measuring the local variance of galaxy counts within certain
volumes, and assuming an expression for the bias, the amplitude of dark-matter fluctuations can be
inferred. Conventionally, the variance of galaxy countsσ8,galaxiesis measured within spheres of ra-
dius 8h−1Mpc, and the result isσ8,galaxies≈ 1. The problem of finding the corresponding variance
σ8 of matter-density fluctuations is that the exact bias mechanism of galaxy formation is still under
debate (e.g. Kauffmann et al. 1997).

3. Normalisation by the local abundance of galaxy clusters (White et al. 1993; Eke et al. 1996; Viana
& Liddle 1996): Galaxy clusters form by gravitational instability from dark-matter density perturba-
tions. Their spatial number density reflects the amplitude of appropriate dark-matter fluctuations in
a very sensitive manner. It is therefore possible to determine the amplitude of the power spectrum by
demanding that the local spatial number density of galaxy clusters be reproduced. Typical scales for
dark-matter fluctuations collapsing to galaxy clusters are of order 10h−1Mpc, hence cluster normal-
isation determines the amplitude of the power spectrum on just that scale.

Since gravitational lensing by large-scale structures is generally sensitive to scales comparable tok−1
0 ∼

12(Ω0h2)Mpc, cluster normalisation appears to be the most appropriate normalisation method for the
present purposes. The solid curve in Fig. 8 shows the CDM power spectrum, linearly and non-linearly
evolved toz= 0 (or a = 1) in an Einstein-de Sitter universe withh = 0.5, normalised to the local cluster
abundance.

2.2.6 Non-Linear Evolution

At late stages of the evolution and on small scales, the growth of density fluctuations begins to depart from
the linear behaviour of eq. (52). Density fluctuations grow non-linear, and fluctuations of different size
interact. Generally, the evolution ofP(k) then becomes complicated and needs to be evaluated numerically.
However, starting from the boldansatzthat the two-point correlation functions in the linear and non-
linear regimes are related by a general scaling relation (Hamilton et al. 1991), which turns out to hold
remarkably well, analytic formulae describing the non-linear behaviour ofP(k) have been derived (Jain
et al. 1995; Peacock & Dodds 1996). It will turn out in subsequent chapters that the non-linear evolution of
the density fluctuations is crucial for accurately calculating weak-lensing effects by large-scale structures.
As an example, we show as the dashed curve in Fig. 8 the CDM power spectrum in an Einstein-de Sitter
universe withh = 0.5, normalised to the local cluster abundance, non-linearly evolved toz= 0. The non-
linear effects are immediately apparent: While the spectrum remains unchanged for large scales (k� k0),
the amplitude on small scales (k� k0) is substantially increased at the expense of scales just above the
peak. It should be noted that non-linearly evolved density fluctuations are no longer fully characterised by
the power spectrum only, because then non-Gaussian features develop.
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Figure 8: CDM power spectrum, normalised to the local abundance of galaxy clusters, for an Einstein-de
Sitter universe withh = 0.5. Two curves are displayed. The solid curve shows the linear, the dashed curve
the non-linear power spectrum. While the linear power spectrum asymptotically falls off∝ k−3, the non-
linear power spectrum, according to Peacock & Dodds (1996), illustrates the increased power on small
scales due to non-linear effects, at the expense of larger-scale structures.

2.2.7 Poisson’s Equation

Localised density perturbations which are much smaller than the horizon and whose peculiar velocities
relative to the mean motion in the Universe are much smaller than the speed of light, can be described by
Newtonian gravity. Their gravitational potential obeys Poisson’s equation,

∇2
r Φ′ = 4πGρ , (63)

whereρ = (1+δ)ρ̄ is the total matter density, andΦ′ is the sum of the potentials of the smooth background
Φ̄ and the potential of the perturbationΦ. The gradient∇r operates with respect to the physical, or proper,
coordinates. Since Poisson’s equation is linear, we can subtract the background contribution∇2

r Φ̄ = 4πGρ̄.
Introducing the gradient with respect to comoving coordinates∇x = a∇r , we can write eq. (63) in the form

∇2
xΦ = 4πGa2 ρ̄δ . (64)

In the matter-dominated epoch,ρ̄ = a−3ρ̄0. With the critical density (15), Poisson’s equation can be re-
written as

∇2
xΦ =

3H2
0

2a
Ω0δ . (65)

2.3 Relevant Properties of Lenses and Sources

Individual reviews have been written on galaxies (e.g. Faber & Gallagher 1979; Binggeli et al. 1988;
Giovanelli & Haynes 1991; Koo & Kron 1992; Ellis 1997), clusters of galaxies (e.g. Bahcall 1977; Rood
1981; Forman & Jones 1982; Bahcall 1988; Sarazin 1986), and active galactic nuclei (e.g. Rees 1984;
Weedman 1986; Blandford et al. 1990; Hartwick & Schade 1990; Warren & Hewett 1990; Antonucci 1993;
Peterson 1997). A detailed presentation of these objects is not the purpose of this review. It suffices here
to summarise those properties of these objects that are relevant for understanding the following discussion.
Properties and peculiarities of individual objects are not necessary to know; rather, we need to specify the
objects statistically. This section will therefore focus on a statistical description, leaving subtleties aside.
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2.3.1 Galaxies

For the purposes of this review, we need to characterise the statistical properties of galaxies as a class.
Galaxies can broadly be grouped into two populations, dubbedearly-typeandlate-typegalaxies, orellip-
ticals andspirals, respectively. While spiral galaxies include disks structured by more or less pronounced
spiral arms, and approximately spherical bulges centred on the disk centre, elliptical galaxies exhibit amor-
phous projected light distributions with roughly elliptical isophotes. There are, of course, more elaborate
morphological classification schemes (e.g. de Vaucouleurs et al. 1991; Buta et al. 1994; Naim et al. 1995a;
Naim et al. 1995b), but the broad distinction between ellipticals and spirals suffices for this review.

Outside galaxy clusters, the galaxy population consists of about 3/4 spiral galaxies and 1/4 elliptical
galaxies, while the fraction of ellipticals increases towards cluster centres. Elliptical galaxies are typically
more massive than spirals. They contain little gas, and their stellar population is older, and thus ‘redder’,
than in spiral galaxies. In spirals, there is a substantial amount of gas in the disk, providing the material for
ongoing formation of new stars. Likewise, there is little dust in ellipticals, but possibly large amounts of
dust are associated with the gas in spirals.

Massive galaxies have of order 1011 solar masses, or 2×1044g within their visible radius. Such galaxies
have luminosities of order 1010 times the solar luminosity. The kinematics of the stars, gas and molecular
clouds in galaxies, as revealed by spectroscopy, indicate that there is a relation between the characteristic
velocities inside galaxies and their luminosity (Faber & Jackson 1976; Tully & Fisher 1977); brighter
galaxies tend to have larger masses.

The differential luminosity distribution of galaxies can very well be described by the functional form

Φ(L)
dL
L∗

= Φ0

(
L
L∗

)−ν
exp

(
− L

L∗

)
dL
L∗

, (66)

proposed by Schechter (1976). The parameters have been measured to be

ν≈ 1.1 , L∗ ≈ 1.1×1010L� , Φ∗ ≈ 1.5×10−2h3Mpc−3 (67)

(e.g. Efstathiou et al. 1988; Marzke et al. 1994a; Marzke et al. 1994b). This distribution means that there
is essentially a sharp cut-off in the galaxy population above luminosities of∼ L∗, and the mean separation

betweenL∗-galaxies is of order∼Φ−1/3
∗ ≈ 4h−1Mpc.

The stars in elliptical galaxies have randomly oriented orbits, while by far the most stars in spirals have
orbits roughly coplanar with the galactic disks. Stellar velocities are therefore characterised by a velocity
dispersionσv in ellipticals, and by an asymptotic circular velocityvc in spirals.3 These characteristic
velocities are related to galaxy luminosities by laws of the form

σv

σv,∗
=
(

L
L∗

)1/α
=

vc

vc,∗
, (68)

whereα ranges around 3−4. For spirals, eq. (68) is called Tully-Fisher (Tully & Fisher 1977) relation, for
ellipticals Faber-Jackson (Faber & Jackson 1976) relation. Both velocity scalesσv,∗ andvc,∗ are of order
220kms−1. Sincevc =

√
2σv, ellipticals with the same luminosity are more massive than spirals.

Most relevant for weak gravitational lensing is a population of faint galaxies emitting bluer light than
local galaxies, the so-calledfaint blue galaxies(Tyson 1988; see Ellis 1997 for a review). There are of order
30−50 such galaxies per square arc minute on the sky which can be mapped with current ground-based
optical telescopes, i.e. there are≈ 20,000−40,000 such galaxies on the area of the full moon. The picture
that the sky is covered with a ‘wall paper’ of those faint and presumably distant blue galaxies is therefore
justified. It is this fine-grained pattern on the sky that makes many weak-lensing studies possible in the first
place, because it allows the detection of the coherent distortions imprinted by gravitational lensing on the
images of the faint blue galaxy population.

Due to their faintness, redshifts of the faint blue galaxies are hard to measure spectroscopically. The
following picture, however, seems to be reasonably secure. It has emerged from increasingly deep and

3The circular velocity of stars and gas in spiral galaxies turns out to be fairly independent of radius, except close to their centre.
These flat rotations curves cannot be caused by the observable matter in these galaxies, but provide strong evidence for the presence
of a dark halo, with density profileρ ∝ r−2 at large radii.
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detailed observations (see, e.g. Broadhurst et al. 1988; Colless et al. 1991; Colless et al. 1993; Lilly
et al. 1991; Lilly 1993; Crampton et al. 1995; and also the reviews by Koo & Kron 1992 and Ellis
1997). The redshift distribution of faint galaxies has been found to agree fairly well with that expected for
a non-evolving comoving number density. While the galaxy number counts in blue light are substantially
above an extrapolation of the local counts down to increasingly faint magnitudes, those in the red spectral
bands agree fairly well with extrapolations from local number densities. Further, while there is significant
evolution of the luminosity function in the blue, in that the luminosity scaleL∗ of a Schechter-type fit
increases with redshift, the luminosity function of the galaxies in the red shows little sign of evolution.
Highly resolved images of faint blue galaxies obtained with theHubble Space Telescopeare now becoming
available. In red light, they reveal mostly ordinary spiral galaxies, while their substantial emission in blue
light is more concentrated to either spiral arms or bulges. Spectra exhibit emission lines characteristic of
star formation.

These findings support the view that the galaxy evolution towards higher redshifts apparent in blue
light results from enhanced star-formation activity taking place in a population of galaxies which, apart
from that, may remain unchanged even out to redshifts ofz& 1. The redshift distribution of the faint blue
galaxies is then sufficiently well described by

p(z)dz=
β

z3
0 Γ(3/β)

z2 exp

[
−
(

z
z0

)β
]

dz . (69)

This expression is normalised to 0≤ z< ∞ and provides a good fit to the observed redshift distribution
(e.g. Smail et al. 1995b). The mean redshift〈z〉 is proportional toz0, and the parameterβ describes how
steeply the distribution falls off beyondz0. For β = 1.5, 〈z〉 ≈ 1.5z0. The parameterz0 depends on the
magnitude cutoff and the colour selection of the galaxy sample.

Background galaxies would be ideal tracers of distortions caused by gravitational lensing if they were
intrinsically circular. Then, any measured ellipticity would directly reflect the action of the gravitational
tidal field of the lenses. Unfortunately, this is not the case. To first approximation, galaxies have intrinsi-
cally elliptical shapes, but the ellipses are randomly oriented. The intrinsic ellipticities introduce noise into
the inference of the tidal field from observed ellipticities, and it is important for the quantification of the
noise to know the intrinsic ellipticity distribution. Let|ε| be the ellipticity of a galaxy image, defined such
that for an ellipse with axesa andb< a,

|ε| ≡ a−b
a+b

. (70)

Ellipses have an orientation, hence the ellipticity has two componentsε1,2, with |ε|= (ε2
1 + ε2

2)1/2. It turns
out empirically that a Gaussian is a good description for the ellipticity distribution,

pε(ε1,ε2)dε1dε2 =
exp(−|ε|2/σ2

ε)
πσ2

ε [1−exp(−1/σ2
ε)]

dε1dε2 , (71)

with a characteristic width ofσε ≈ 0.2 (e.g. Miralda-Escude 1991; Tyson & Seitzer 1988; Brainerd et al.
1996). We will later (Sect. 4.2) define galaxy ellipticities for the general situation where the isophotes are
not ellipses. This completes our summary of galaxy properties as required here.

2.3.2 Groups and Clusters of Galaxies

Galaxies are not randomly distributed in the sky. Their positions are correlated, and there are areas in the
sky where the galaxy density is noticeably higher or lower than average (cf. the galaxy count map in Fig. 9).
There are groups consisting of a few galaxies, and there areclusters of galaxiesin which some hundred up
to a thousand galaxies appear very close together.

The most prominent galaxy cluster in the sky covers a huge area centred on the Virgo constellation. Its
central region has a diameter of about 7◦, and its main body extends over roughly 15◦×40◦. It was already
noted by Sir William Herschel in the 18th century that the entire Virgo cluster covers about 1/8th of the
sky, while containing about 1/3rd of the galaxies observable at that time.

Zwicky noted in 1933 that the galaxies in the Coma cluster and other rich clusters move so fast that the
clusters required about ten to 100 times more mass to keep the galaxies bound than could be accounted for
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Figure 9: The Lick galaxy counts within 50◦ radius around the North Galactic pole (Seldner et al. 1977).
The galaxy number density is highest at the black and lowest at the white regions on the map. The picture
illustrates structure in the distribution of fairly nearby galaxies, viz. under-dense regions, long extended
filaments, and clusters of galaxies.

by the luminous galaxies themselves. This was the earliest indication that there is invisible mass, or dark
matter, in at least some objects in the Universe.

Several thousands of galaxy clusters are known today. Abell’s (1958) cluster catalog lists 2712 clusters
north of−20◦ declination and away from the Galactic plane. Employing a less restrictive definition of
galaxy clusters, the catalog by Zwicky et al. (1968) identifies 9134 clusters north of−3◦ declination.
Cluster masses can exceed 1048g or 5×1014M�, and they have typical radii of≈ 5×1024cm or≈ 1.5Mpc.

Figure 10: The galaxy cluster Abell 370, in which the first gravitationally lensed arc was detected (Lynds
& Petrosian 1986; Soucail et al. 1987a, 1987b). Most of the bright galaxies seen are cluster members at
z= 0.37, whereas the arc, i.e. the highly elongated feature, is the image of a galaxy at redshiftz= 0.724
(Soucail et al. 1988). (courtesy of J.-P. Kneib)

When X–ray telescopes became available after 1966, it was discovered that clusters are powerful X–
ray emitters. Their X–ray luminosities fall within(1043−1045)ergs−1, rendering galaxy clusters the most
luminous X–ray sources in the sky. Improved X–ray telescopes revealed that the source of X–ray emis-
sion in clusters is extended rather than point-like, and that the X–ray spectra are best explained by thermal
bremsstrahlung(free-free radiation) from a hot, dilute plasma with temperatures in the range(107−108)K
and densities of∼ 10−3 particles per cm3. Based on the assumption that this intra-cluster gas is in hydro-
static equilibrium with a spherically symmetric gravitational potential of the total cluster matter, the X–ray
temperature and flux can be used to estimate the cluster mass. Typical resultsapproximately(i.e. up to a
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factor of∼ 2) agree with the mass estimates from the kinematics of cluster galaxies employing the virial
theorem. The mass of the intra-cluster gas amounts to about 10% of the total cluster mass. The X–ray emis-
sion thus independently confirms the existence of dark matter in galaxy clusters. Sarazin (1986) reviews
clusters of galaxies focusing on their X–ray emission.

Later, luminous arc-like features were discovered in two galaxy clusters (Lynds & Petrosian 1986; Sou-
cail et al. 1987a, 1987b; see Fig. 10). Their light is typically bluer than that from the cluster galaxies, and
their length is comparable to the size of the central cluster region. Paczyński (1987) suggested that these
arcsare images of galaxies in the background of the clusters which are strongly distorted by the gravita-
tional tidal field close to the cluster centres. This explanation was generally accepted when spectroscopy
revealed that the sources of the arcs are much more distant than the clusters in which they appear (Soucail
et al. 1988).

Large arcs require special alignment of the arc source with the lensing cluster. At larger distance from
the cluster centre, images of background galaxies are only weakly deformed, and they are referred to as
arclets(Fort et al. 1988; Tyson et al. 1990). The high number density of faint arclets allows one to measure
the coherent distortion caused by the tidal gravitational field of the cluster out to fairly large radii. One
of the main applications of weak gravitational lensing is to reconstruct the (projected) mass distribution of
galaxy clusters from their measurable tidal fields. Consequently, the corresponding theory constitutes one
of the largest sections of this review.

Such strong and weak gravitational lens effects offer the possibility to detect and measure the entire
cluster mass, dark and luminous, without referring to any equilibrium or symmetry assumptions like those
required for the mass estimates from galactic kinematics or X–ray emission. For a review on arcs and
arclets in galaxy clusters see Fort & Mellier (1994).

Apart from being spectacular objects in their own right, clusters are also of particular interest for cos-
mology. Being the largest gravitationally bound entities in the cosmos, they represent the high-mass end
of collapsed structures. Their number density, their individual properties, and their spatial distribution con-
strain the power spectrum of the density fluctuations from which the structure in the universe is believed
to have originated (e.g. Viana & Liddle 1996; Eke et al. 1996). Their formation history is sensitive to the
parameters that determine the geometry of the universe as a whole. If the matter density in the universe is
high, clusters tend to form later in cosmic history than if the matter density is low (first noted by Richstone
et al. 1992). This is due to the behaviour of the growth factor shown in Fig. 6, combined with the Gaussian
nature of the initial density fluctuations. Consequently, the compactness and the morphology of clusters re-
flect the cosmic matter density, and this has various observable implications. One method to normalise the
density-perturbation power spectrum fixes its overall amplitude such that the local spatial number density
of galaxy clusters is reproduced. This method, calledcluster normalisationand pioneered by White et al.
(1993), will frequently be used in this review.

In summary, clusters are not only regions of higher galaxy number density in the sky, but they are
gravitationally bound bodies whose member galaxies contribute only a small fraction of their mass. About
80% of their mass is dark, and roughly 10% is in the form of the diffuse, X–ray emitting gas spread
throughout the cluster. Mass estimates inferred from galaxy kinematics, X–ray emission, and gravitational-
lensing effects generally agree to within about a factor of two, typically arriving at masses of order 5×
1014 solar masses, or 1048g. Typical sizes of galaxy clusters are of order several megaparsecs, or 5×
1024cm. In addition, there are smaller objects, calledgalaxy groups, which contain fewer galaxies and
have typical masses of order 1013 solar masses.

2.3.3 Active Galactic Nuclei

The term ‘active galactic nuclei’ (AGNs) is applied to galaxies which show signs of non-stellar radiation
in their centres. Whereas the emission from ‘normal’ galaxies like our own is completely dominated by
radiation from stars and their remnants, the emission from AGNs is a combination of stellar light and
non-thermal emission from their nuclei. In fact, the most prominent class of AGNs, the quasi-stellar radio
sources, or quasars, have their names derived from the fact that their optical appearance is point-like. The
nuclear emission almost completely outshines the extended stellar light of its host galaxy.

AGNs do not form a homogeneous class of objects. Instead, they are grouped into several types. The
main classes are: quasars, quasi-stellar objects (QSOs), Seyfert galaxies, BL Lacertae objects (BL Lacs),
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and radio galaxies. What unifies them is the non-thermal emission from their nucleus, which manifests
itself in various ways: (1) radio emission which, owing to its spectrum and polarisation, is interpreted as
synchrotron radiation from a power-law distribution of relativistic electrons; (2) strong ultraviolet and opti-
cal emission lines from highly ionised species, which in some cases can be extremely broad, corresponding
to Doppler velocities up to∼ 20,000kms−1, thus indicating the presence of semi-relativistic velocities in
the emission region; (3) a flat ultraviolet-to-optical continuum spectrum, often accompanied by polarisa-
tion of the optical light, which cannot naturally be explained by a superposition of stellar (Planck) spectra;
(4) strong X–ray emission with a hard power-law spectrum, which can be interpreted as inverse Compton
radiation by a population of relativistic electrons with a power-law energy distribution; (5) strong gamma-
ray emission; (6) variability at all wavelengths, from the radio to the gamma-ray regime. Not all these
phenomena occur at the same level in all the classes of AGNs. QSOs, for example, can roughly be grouped
into radio-quiet QSOs and quasars, the latter emitting strongly at radio wavelengths.

Since substantial variability cannot occur on timescales shorter than the light-travel time across the
emitting region, the variability provides a rigorous constraint on the compactness of the region emitting
the bulk of the nuclear radiation. In fact, this causality argument based on light-travel time can mildly be
violated if relativistic velocities are present in the emitting region. Direct evidence for this comes from
the observation of the so-called superluminal motion, where radio-source components exhibit apparent
velocities in excess ofc (e.g. Zensus & Pearson 1987). This can be understood as a projection effect,
combining velocities close to (but of course smaller than) the velocity of light with a velocity direction
close to the line-of-sight to the observer. Observations of superluminal motion indicate that bulk velocities
of the radio-emitting plasma components can have Lorentz factors of order 10, i.e., they move at∼ 0.99c.

The standard picture for the origin of this nuclear activity is that a supermassive black hole (or order
108M�), situated in the centre of the host galaxy, accretes gas from the host. In this process, gravitational
binding energy is released, part of which can be transformed into radiation. The appearance of an AGN
then depends on the black-hole mass and angular momentum, the accretion rate, the efficiency of the
transformation of binding energy into radiation, and on the orientation relative to the line-of-sight. The
understanding of the physical mechanisms in AGNs, and how they are related to their phenomenology, is
still rather incomplete. We refer the reader to the books and articles by Begelman et al. (1984), Weedman
(1986), Blandford et al. (1990), Peterson (1997), and Krolik (1999), and references therein, for an overview
of the phenomena in AGNs, and of our current ideas on their interpretation. For the current review, we only
make use of one particular property of AGNs:

QSOs can be extremely luminous. Their optical luminosity can reach a factor of thousand or more
times the luminosity of normal galaxies. Therefore, their nuclear activity completely outshines that of the
host galaxy, and the nuclear sources appear point-like on optical images. Furthermore, the high luminosity
implies that QSOs can be seen to very large distances, and in fact, until a few years ago QSOs held the
redshift record. In addition, the comoving number density of QSOs evolves rapidly with redshift. It was
larger than today by a factor of∼ 100 at redshifts between 2 and 3. Taken together, these two facts imply
that a flux-limited sample of QSOs has a very broad redshift distribution, in particular, very distant objects
are abundant in such a sample.

However, it is quite difficult to obtain a ‘complete’ flux-limited sample of QSOs. Of all point-like
objects at optical wavelengths, QSOs constitute only a tiny fraction, most being stars. Hence, morphology
alone does not suffice to obtain a candidate QSO sample which can be verified spectroscopically. However,
QSOs are found to have very blue optical colours, by which they can efficiently be selected. Colour
selection typically yields equal numbers of white dwarfs and QSOs with redshifts below∼ 2.3. For higher-
redshift QSOs, the strong Lyα emission line moves from the U-band filter into the B-band, yielding redder
U−B colours. For these higher-redshift QSOs, multi-colour or emission-line selection criteria must be used
(cf. Fan et al. 1999). In contrast to optical selection, AGNs are quite efficiently selected in radio surveys.
The majority of sources selected at centimeter wavelengths are AGNs. A flux-limited sample of radio-
selected AGNs also has a very broad redshift distribution. The large fraction of distant objects in these
samples make AGNs particularly promising sources for the gravitational lensing effect, as the probability
of finding an intervening mass concentration close to the line-of-sight increases with the source distance.
In fact, most of the known multiple-image gravitational lens systems have AGN sources.

In addition to their high redshifts, the number counts of AGNs are important for lensing. For bright
QSOs with apparent B-band magnitudesB. 19, the differential source counts can be approximated by a
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power law,n(S) ∝ S−(α+1), wheren(S)dS is the number density of QSOs per unit solid angle with flux
within dSof S, andα≈ 2.6. At fainter magnitudes, the differential source counts can also be approximated
by a power law in flux, but with a much flatter index ofα ∼ 0.5. The source counts at radio wavelengths
are also quite steep for the highest fluxes, and flatten as the flux decreases. The steepness of the source
counts will be the decisive property of AGNs for the magnification bias, which will be discussed in Sect. 6.

2.4 Correlation Functions, Power Spectra, and their Projections

2.4.1 Definitions; Homogeneous and Isotropic Random Fields

In this subsection, we define the correlation function and the power spectrum of a random field, which will
be used extensively in later sections. One example already occurred above, namely the power spectrumPδ
of the density fluctuation fieldδ.

Consider a random fieldg(~x) whose expectation value is zero everywhere. This means that an average
over many realisations of the random field should vanish,〈g(~x)〉 = 0, for all~x. This is not an important
restriction, for if that was not the case, we could consider the fieldg(~x)−〈g(~x)〉 instead, which would have
the desired property. Spatial positions~x haven dimensions, and the field can be either real or complex.

A random fieldg(~x) is calledhomogeneousif it cannot statistically be distinguished from the field
g(~x+~y), where~y is an arbitrary translation vector. Similarly, a random fieldg(~x) is called isotropic if
it has the same statistical properties as the random fieldg(R~x), whereR is an arbitrary rotation matrix
in n dimensions. Restricting our attention to homogeneous and isotropic random fields, we note that the
two-point correlation function

〈g(~x)g∗(~y)〉= Cgg(|~x−~y|) (72)

can only depend on the absolute value of the difference vector between the two points~x and~y. Note thatCgg

is real, even ifg is complex. This can be seen by taking the complex conjugate of (72), which is equivalent
to interchanging~x and~y, leaving the right-hand-side unaffected.

We define the Fourier-transform pair ofg as

ĝ(~k) =
∫
Rn

dnxg(~x)ei~x·~k ; g(~x) =
∫
Rn

dnk
(2π)n ĝ(~k)e−i~x·~k . (73)

We now calculate the correlation function in Fourier space,

〈ĝ(~k)ĝ∗(~k′)〉=
∫
Rn

dnxei~x·~k
∫
Rn

dnx′e−i~x′·~k′〈g(~x)g∗(~x′)〉 . (74)

Using (72) and substituting~x′ =~x+~y, this becomes

〈ĝ(~k)ĝ∗(~k′)〉 =
∫
Rn

dnxei~x·~k
∫
Rn

dnye−i(~x+~y)·~k′Cgg(|~y|)

= (2π)nδD(~k−~k′)
∫
Rn

dnye−i~y·~kCgg(|~y|)

≡ (2π)nδD(~k−~k′)Pg(|~k|) . (75)

In the final step, we defined thepower spectrumof the homogeneous and isotropic random fieldg,

Pg(|~k|) =
∫
Rn

dnye−i~y·~kCgg(|~y|) , (76)

which is the Fourier transform of the two-point correlation function. Isotropy of the random field implies
thatPg can only depend on the modulus of~k.

Gaussian random fieldsare characterised by the property that the probability distribution of any lin-
ear combination of the random fieldg(~x) is Gaussian. More generally, the joint probability distribution
of a numberM of linear combinations of the random variableg(~xi) is a multivariate Gaussian. This is
equivalent to requiring that the Fourier components ˆg(~k) are mutually statistically independent, and that
the probability densities for the ˆg(~k) are Gaussian with dispersionPg(|~k|). Thus, a Gaussian random field
is fully characterised by its power spectrum.
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2.4.2 Projections; Limber’s Equation

We now derive a relation between the power spectrum (or the correlation function) of a homogeneous
isotropic random field in three dimensions, and its projection onto two dimensions. Specifically, for the
three-dimensional field, we consider the density contrastδ[ fK(w)~θ,w], where~θ is a two-dimensional vector,
which could be an angular position on the sky. Hence,fK(w)~θ andw form a local comoving isotropic
Cartesian coordinate system. We define two different projections ofδ along the backward-directed light
cone of the observer atw = 0, t = t0,

gi(~θ) =
∫

dwqi(w)δ[ fK(w)~θ,w] , (77)

for i = 1,2. Theqi(w) are weight functions, and the integral extends fromw = 0 to the horizonw = wH.
Sinceδ is a homogeneous and isotropic random field, so is its projection. Consider now the correlation
function

C12 = 〈g1(~θ)g2(~θ′)〉

=
∫

dwq1(w)
∫

dw′q2(w′)〈δ[ fK(w)~θ,w]δ[ fK(w′)~θ′,w′]〉 . (78)

We assume that there is no power in the density fluctuations on scales larger than a coherence scaleLcoh.
This is justified because the power spectrumPδ declines∝ k ask→ 0; see (62). This implies that the cor-
relation function on the right-hand side of eq. (78) vanishes forwH� |w−w′|& Lcoh. Althoughδ evolves
cosmologically, it can be considered constant over a time scale on which light travels across a comoving
distanceLcoh. We note that the second argument ofδ simultaneously denotes the third local spatial di-
mension and the cosmological epoch, related through the light-cone condition|cdt| = adw. Furthermore,
we assume that the weight functionsqi(w) do not vary appreciably over a scale∆w≤ Lcoh. Consequently,
|w−w′| . Lcoh over the scale whereCδδ is non-zero, and we can setfK(w′) ≈ fK(w) andq2(w′) = q2(w)
to obtain

C12(θ) =
∫

dwq1(w)q2(w)
∫

d(∆w)Cδδ

(√
f 2
K(w)θ2 +(∆w)2,w

)
. (79)

The second argument ofCδδ now denotes the dependence of the correlation function on cosmic epoch.
Equation (79) is one form of Limber’s (1953) equation, which relates the two-point correlation of the
projectedfield to that of thethree-dimensionalfield.

Another very useful form of this equation relates the projected two-point correlation function to the
power spectrum of the three-dimensional field. The easiest way to derive this relation is by replacing the
δ’s in (78) by their Fourier transforms, where upon

C12 =
∫

dwq1(w)
∫

dw′q2(w′)
∫

d3k
(2π)3

∫
d3k′

(2π)3

× 〈δ̂(~k,w) δ̂∗(~k′,w′)〉e−i fK(w)~k⊥·~θ ei fK(w′)~k′⊥·~θ
′
e−ik3weik′3w′ . (80)

~k⊥ is the two-dimensional wave vector perpendicular to the line-of-sight. The correlator can be replaced
by the power spectrumPδ using (75). This introduces a Dirac delta functionδD(~k−~k′), which allows us
to carry out the~k′-integration. Under the same assumptions on the spatial variation ofqi(w) and fK(w) as
before, we find

C12 =
∫

dwq1(w)q2(w)
∫

d3k
(2π)3 Pδ(|~k|,w)e−i fK(w)~k⊥·(~θ−~θ′) e−ik3w

×
∫

dw′eik3w′ . (81)

The final integral yields 2πδD(k3), indicating that only such modes contribute to the projected correlation
function whose wave-vectors lie in the plane of the sky (Blandford et al. 1991). Finally, carrying out the
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trivial k3-integration yields

C12(θ) =
∫

dwq1(w)q2(w)
∫

d2k⊥
(2π)2 Pδ(|~k⊥|,w)e−i fK(w)~k⊥·~θ (82)

=
∫

dwq1(w)q2(w)
∫

kdk
2π

P(k,w)J0[ fK(w)θk] . (83)

The definition (73) of the Fourier transform, and the relation (76) between power spectrum and correlation
function allow us to write the (cross) power spectrumP12(l) as

P12(l) =
∫

d2θC12(θ)ei~l ·~θ

=
∫

dwq1(w)q2(w)
∫

d2k⊥
(2π)2 Pδ(|~k⊥|,w)(2π)2 δD[~l − fk(w)~k⊥]

=
∫

dw
q1(w)q2(w)

f 2
K(w)

Pδ

(
l

fK(w)
,w

)
, (84)

which is Limber’s equation in Fourier space (Kaiser 1992, 1998). We shall make extensive use of these
relations in later sections.
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3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light deflection by gravitational
fields. Granted the validity of Einstein’s Theory of General Relativity, light propagates on the null geodesics
of the space-time metric. However, most astrophysically relevant situations permit a much simpler approx-
imate description of light rays, which is called gravitational lens theory; we first describe this theory in
Sect. 3.1. It is sufficient for the treatment of lensing by galaxy clusters in Sect. 5, where the deflecting
mass is localised in a region small compared to the distance between source and deflector, and between
deflector and observer. In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects resulting therefrom
require a more general description, which we shall develop in Sect. 3.2. In particular, we outline how the
gravitational lens approximation derives from this more general description.

3.1 Gravitational Lens Theory

Observer


Lens plane


Source plane


θ


β


ξ


α̂


η
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Dd
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Figure 11: Sketch of a typical gravitational lens system.

A typical situation considered in gravitational lensing is sketched in Fig. 11, where a mass concentration
at redshiftzd (or angular diameter distanceDd) deflects the light rays from a source at redshiftzs (or angular
diameter distanceDs). If there are no other deflectors close to the line-of-sight, and if the extent of the
deflecting mass along the line-of-sight is very much smaller than bothDd and the angular diameter distance
Dds from the deflector to the source,4 the actual light rays which are smoothly curved in the neighbourhood
of the deflector can be replaced by two straight rays with a kink near the deflector. The magnitude and
direction of this kink is described by thedeflection anglê~α, which depends on the mass distribution of the
deflector and the impact vector of the light ray.

3.1.1 The Deflection Angle

Consider first the deflection by a point massM. If the light ray does not propagate through the strong grav-
itational field close to the horizon, that is, if its impact parameterξ is much larger than the Schwarzschild
radius of the lens,ξ� RS≡ 2GM c−2, then General Relativity predicts that the deflection angleα̂ is

α̂ =
4GM
c2 ξ

. (85)

4This condition is very well satisfied in most astrophysical situations. A cluster of galaxies, for instance, has a typical size of a
few Mpc, whereas the distancesDd, Ds, andDds are fair fractions of the Hubble lengthcH−1

0 = 3h−1×103 Mpc.
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This is just twice the value obtained in Newtonian gravity (see the historical remarks in Schneider et al.
1992). According to the conditionξ� RS, the deflection angle is small,α̂� 1.

The field equations of General Relativity can be linearised if the gravitational field is weak. The deflec-
tion angle of an ensemble of point masses is then the (vectorial) sum of the deflections due to individual
lenses. Consider now a three-dimensional mass distribution with volume densityρ(~r). We can divide it
into cells of size dV and mass dm = ρ(~r)dV. Let a light ray pass this mass distribution, and describe its
spatial trajectory by(ξ1(λ),ξ2(λ), r3(λ)), where the coordinates are chosen such that the incoming light
ray (i.e. far from the deflecting mass distribution) propagates alongr3. The actual light ray is deflected, but
if the deflection angle is small, it can be approximated as a straight line in the neighbourhood of the de-
flecting mass. This corresponds to the Born approximation in atomic and nuclear physics. Then,~ξ(λ)≡~ξ,
independent of the affine parameterλ. Note that~ξ = (ξ1,ξ2) is a two-dimensional vector. The impact
vector of the light ray relative to the mass element dm at~r = (ξ′1,ξ

′
2, r
′
3) is then~ξ−~ξ′, independent ofr ′3,

and the total deflection angle is

~̂α(~ξ) =
4G
c2 ∑dm(ξ′1,ξ

′
2, r
′
3)

~ξ−~ξ′

|~ξ−~ξ′|2

=
4G
c2

∫
d2ξ′

∫
dr ′3 ρ(ξ′1,ξ

′
2, r
′
3)

~ξ−~ξ′

|~ξ−~ξ′|2
, (86)

which is also a two-dimensional vector. Since the last factor in eq. (86) is independent ofr ′3, the r ′3-
integration can be carried out by defining thesurface mass density

Σ(~ξ)≡
∫

dr3 ρ(ξ1,ξ2, r3) , (87)

which is the mass density projected onto a plane perpendicular to the incoming light ray. Then, the deflec-
tion angle finally becomes

~̂α(~ξ) =
4G
c2

∫
d2ξ′Σ(~ξ′)

~ξ−~ξ′

|~ξ−~ξ′|2
. (88)

This expression is valid as long as the deviation of the actual light ray from a straight (undeflected) line
within the mass distribution is small compared to the scale on which the mass distribution changes signifi-
cantly. This condition is satisfied in virtually all astrophysically relevant situations (i.e. lensing by galaxies
and clusters of galaxies), unless the deflecting mass extends all the way from the source to the observer
(a case which will be dealt with in Sect. 6). It should also be noted that in a lensing situation such as
displayed in Fig. 11, the incoming light rays are not mutually parallel, but fall within a beam with open-
ing angle approximately equal to the angle which the mass distribution subtends on the sky. This angle,
however, is typicallyverysmall (in the case of cluster lensing, the relevant angular scales are of order 1 arc
min≈ 2.9×10−4).

3.1.2 The Lens Equation

We now require an equation which relates the true position of the source to its observed position on the sky.
As sketched in Fig. 11, the source and lens planes are defined as planes perpendicular to a straight line (the
optical axis) from the observer to the lens at the distance of the source and of the lens, respectively. The
exact definition of the optical axis does not matter because of the smallness of angles involved in a typical
lens situation, and the distance to the lens is well defined for a geometrically-thin matter distribution. Let
~η denote the two-dimensional position of the source on the source plane. Recalling the definition of the
angular-diameter distance, we can read off Fig. 11

~η =
Ds

Dd

~ξ−Dds~̂α(~ξ) . (89)

Introducing angular coordinates by~η = Ds
~β and~ξ = Dd~θ, we can transform eq. (89) to

~β =~θ− Dds

Ds
~̂α(Dd~θ)≡~θ−~α(~θ) , (90)
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where we defined the scaled deflection angle~α(~θ) in the last step. The interpretation of the lens equation
(90) is that a source with true position~β can be seen by an observer at angular positions~θ satisfying (90). If
(90) has more than one solution for fixed~β, a source at~β has images at several positions on the sky, i.e. the
lens produces multiple images. For this to happen, the lens must be ‘strong’. This can be quantified by the
dimension-less surface mass density

κ(~θ) =
Σ(Dd~θ)

Σcr
with Σcr =

c2

4πG
Ds

DdDds
, (91)

whereΣcr is called the critical surface mass density (which depends on the redshifts of source and lens).
A mass distribution which hasκ ≥ 1 somewhere, i.e.Σ ≥ Σcr, produces multiple images for some source
positions~β (see Schneider et al. 1992, Sect. 5.4.3). Hence,Σcr is a characteristic value for the surface
mass density which distinguishes between ‘weak’ and ‘strong’ lenses. Note thatκ≥ 1 is sufficient but not
necessary for producing multiple images. In terms ofκ, the scaled deflection angle reads

~α(~θ) =
1
π

∫
R2

d2θ′κ(~θ′)
~θ−~θ′

|~θ−~θ′|2
. (92)

Equation (92) implies that the deflection angle can be written as the gradient of thedeflection potential,

ψ(~θ) =
1
π

∫
R2

d2θ′κ(~θ′) ln |~θ−~θ′| , (93)

as~α = ∇ψ. The potentialψ(~θ) is the two-dimensional analogue of the Newtonian gravitational potential
and satisfies the Poisson equation∇2ψ(~θ) = 2κ(~θ).

3.1.3 Magnification and Distortion

The solutions~θ of the lens equation yield the angular positions of the images of a source at~β. The shapes
of the images will differ from the shape of the source because light bundles are deflected differentially.
The most visible consequence of this distortion is the occurrence of giant luminous arcs in galaxy clusters.
In general, the shape of the images must be determined by solving the lens equation for all points within
an extended source. Liouville’s theorem and the absence of emission and absorption of photons in grav-
itational light deflection imply that lensing conserves surface brightness (or specific intensity). Hence, if
I (s)(~β) is the surface brightness distribution in the source plane, the observed surface brightness distribution
in the lens plane is

I(~θ) = I (s)[~β(~θ)] . (94)

If a source is much smaller than the angular scale on which the lens properties change, the lens mapping
can locally be linearised. The distortion of images is then described by the Jacobian matrix

A(~θ) =
∂~β
∂~θ

=

(
δi j −

∂2ψ(~θ)
∂θi∂θ j

)
=
(

1−κ− γ1 −γ2

−γ2 1−κ + γ1

)
, (95)

where we have introduced the components of the shearγ≡ γ1 + iγ2 = |γ|e2iϕ,

γ1 =
1
2

(ψ,11−ψ,22) , γ2 = ψ,12 , (96)

andκ is related toψ through Poisson’s equation. Hence, if~θ0 is a point within an image, corresponding to
the point~β0 =~β(~θ0) within the source, we find from (94) using the locally linearised lens equation

I(~θ) = I (s)
[
~β0 + A(~θ0) · (~θ−~θ0)

]
. (97)

According to this equation, the images of a circular source are ellipses. The ratios of the semi-axes of
such an ellipse to the radius of the source are given by the inverse of the eigenvalues ofA(~θ0), which are
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1−κ±|γ|, and the ratio of the solid angles subtended by an image and the unlensed source is the inverse
of the determinant ofA . The fluxes observed from the image and from the unlensed source are given as
integrals over the brightness distributionsI(~θ) andI (s)(~β), respectively, and their ratio is themagnification
µ(~θ0). From (97), we find

µ =
1

detA
=

1
(1−κ)2−|γ|2

. (98)

The images are thus distorted in shape and size. The shape distortion is due to the tidal gravitational field,
described by the shearγ, whereas the magnification is caused by both isotropic focusing caused by the local
matter densityκ and anisotropic focusing caused by shear.

Since the shear is defined by the trace-free part of the symmetric Jacobian matrixA , it has two inde-
pendent components. There exists a one-to-one mapping from symmetric, trace-free 2×2 matrices onto
complex numbers, and we shall extensively use complex notation. Note that the shear transforms as e2iϕ

under rotations of the coordinate frame, and is therefore not a vector. Equations (93) and (96) imply that
the complex shear can be written

γ(~θ) =
1
π

∫
R2

d2θ′D(~θ−~θ′)κ(~θ′) ,

with D(~θ)≡ θ2
2−θ2

1−2iθ1θ2

|~θ|4
=

−1
(θ1− iθ2)2 . (99)

3.1.4 Critical Curves and Caustics

Points in the lens plane where the JacobianA is singular, i.e. where detA = 0, form closed curves, the
critical curves. Their image curves in the source plane are calledcaustics. Equation (98) predicts that
sources on caustics are infinitely magnified; however, infinite magnification does not occur in reality, for
two reasons. First, each astrophysical source is extended, and its magnification (given by the surface
brightness-weighted point-source magnification across its solid angle) remains finite. Second, even point
sources would be magnified by a finite value since for them, the geometrical-optics approximation fails near
critical curves, and a wave-optics description leads to a finite magnification (e.g. Ohanian 1983; Schneider
et al. 1992, Chap. 7). For the purposes of this review, the first effect always dominates. Nevertheless,
images near critical curves can be magnified and distorted substantially, as is demonstrated by the giant
luminous arcs which are formed from source galaxies close to caustics. (Point) sources which move across
a caustic have their number of images changed by±2, and the two additional images appear or disappear at
the corresponding critical curve in the lens plane. Hence, only sources inside a caustic are multiply imaged.

3.1.5 An Illustrative Example: Isothermal Spheres

The rotation curves of spiral galaxies are observed to be approximately flat out to the largest radii where
they can be measured. If the mass distribution in a spiral galaxy followed the light distribution, the rota-
tion curves would have to decrease at large radii in roughly Keplerian fashion. Flat rotation curves thus
provide the clearest evidence for dark matter on galactic scales. They can be understood if galactic disks
are embedded in a dark halo with density profileρ ∝ r−2 for large r. The projected mass density then
behaves likeθ−1. Such density profiles are obtained by assuming that the velocity dispersion of the dark
matter particles is spatially constant. They are therefore also called isothermal profiles. We shall describe
some simple properties of a gravitational lens with an isothermal mass profile, which shall later serve as a
reference.

The projected surface mass density of asingular isothermal sphereis

Σ(ξ) =
σ2

v

2Gξ
, (100)

whereσv is the line-of-sight velocity dispersion of the ‘particles’ (e.g. stars in galaxies, or galaxies in
clusters of galaxies) in the gravitational potential of the mass distribution, assuming that they are in virial
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equilibrium. The corresponding dimensionless surface mass density is

κ(θ) =
θE

2θ
, where θE = 4π

(σv

c

)2 Dds

Ds
(101)

is called theEinstein deflection angle. As can easily be verified from (92), the magnitude of the scaled
deflection angle is constant for this mass profile,|~α|= θE, and the deflection potential isψ = θE|~θ|. From
that, the shear is obtained using (96)5,

γ(~θ) =− θE

2|~θ|
e2iϕ , (102)

and the magnification is

µ(~θ) =
|~θ|

|~θ|−θE
. (103)

This shows that|~θ| = θE defines a critical curve, which is called theEinstein circle. The correspond-
ing caustic, obtained by mapping the Einstein circle back into the source plane under the lens equation,
degenerates to a single point at~β =~0. Such degenerate caustics require highly symmetric lenses. Any
perturbation of the mass distribution breaks the degeneracy and expands the singular caustic point into a
caustic curve (see Chapter 6 in Schneider et al. 1992 for a detailed treatment of critical curves and caus-
tics). The lens (101) produces two images with angular separation 2θE for a source with|~β| < 1, and one
image otherwise.

The mass distribution (101) has two unsatisfactory properties. The surface mass density diverges for
|~θ| → 0, and the total mass of the lens is infinite. Clearly, both of these properties will not match real mass
distributions. Despite this fact, the singular isothermal sphere fits many of the observed lens systems fairly
well. In order to construct a somewhat more realistic lens model, one can cut off the distribution at small
and large distances, e.g. by

κ(~θ) =
θE

2
√
|~θ|2 + θ2

c

− θE

2
√
|~θ|2 + θ2

t

, (104)

which has a core radiusθc, and a truncation radiusθt. For θc� |~θ| � θt, this mass distribution behaves
like θ−1. This lens can produce three images, but only ifθcθt (θc + θt)−1 < θE/2. One of the three images
occurs near the centre of the lens and is strongly de-magnified ifθc� θE. In most of the multiple-image
QSO lens systems, there is no indication for a third central image, imposing strict upper bounds onθc,
whereas for some arc systems in clusters, a finite core size is required when a lens model like (104) is
assumed.

3.2 Light Propagation in Arbitrary Spacetimes

We now turn to a more rigorous description of the propagation of light rays, based on the theory of ge-
ometrical optics in General Relativity. We then specialise the resulting propagation equations to the case
of weak gravitational fields and metric perturbations to the background of an expanding universe. These
equations contain the gravitational lens equation discussed previously as a special case. We shall keep the
discussion brief and follow closely the work of Schneider et al. (1992, Chaps. 3 & 4), and Seitz et al.
(1994), where further references can be found.

3.2.1 Propagation of Light Bundles

In Sect. 3.1.2, we have derived the lens equation (89) in a heuristic way. A rigorous derivation in an
arbitrary spacetime must account for the fact that distance vectors between null geodesics are four-vectors.
Nevertheless, by choosing an appropriate coordinate system, the separation transverse to the line-of-sight

5For axially-symmetric projected mass profiles, the magnitude of the shear can be calculated from|γ|(θ) = κ̄(θ)−κ(θ), where
κ̄(θ) is the mean surface mass density inside a circle of radiusθ from the lens centre. Accordingly, the magnitude of the deflection
angle is|~α|= θκ̄(θ).

33



between two neighbouring light rays can effectively be described by a two-dimensional vector~ξ. We
outline this operation in the following two paragraphs.

We first consider the propagation of infinitesimally thin light beams in an arbitrary space-time, char-
acterised by the metric tensorgµν. The propagation of a fiducial rayγ0 of the bundle is determined by the
geodesic equation (e.g. Misner et al. 1973; Weinberg 1972). We are interested here in the evolution of the
shape of the bundle as a function of the affine parameter along the fiducial ray. Consider an observer O
with four-velocityUµ

o , satisfyingUµ
oUoµ = 1. The physical wave vectorkµ of a photon depends on the light

frequency. We definẽkµ≡ −c−1ωokµ as a past-directed dimensionless wave vector which is independent
of the frequencyωo measured by the observer. We choose an affine parameterλ of the rays passing through
O such that (1)λ = 0 at the observer, (2)λ increases along the backward light cone of O, and (3)Uµ

o k̃µ =−1
at O. Then, with the definition of̃kµ, it follows that k̃µ = dxµ/dλ, and thatλ measures the proper distance
along light rays for events close to O.

Let γµ(~θ,λ) characterise the rays of a light beam with vertex at O, such that~θ is the angle between a ray
and the fiducial ray withγµ

0(λ) ≡ γµ(~0,λ). Further, letYµ(~θ,λ) = γµ(~θ,λ)− γµ(~0,λ) = [∂γµ(~θ,λ)/∂θk]θk

denote the vector connecting the ray characterised by~θ with the fiducial ray at the same affine parameter
λ, where we assumed sufficiently small|~θ| so thatYµ can be linearised in~θ. We can then decomposeYµ as
follows. At O, the vectorsUµ

o andk̃µ define a two-dimensional plane perpendicular to bothUµ
o andk̃µ. This

plane is tangent to the sphere of directions seen by the observer. Now choose orthonormal unit vectorsE1

andE2 to span that plane. Hence,Eµ
1E2µ = 0, Eµ

k Ekµ = −1, Eµ
k k̃µ = Eµ

kUoµ = 0, for k = 1,2. Transporting
the four vectors̃kµ, Uµ

o , Eµ
1, andEµ

2 parallel along the fiducial ray defines avierbeinat each event along the
fiducial ray. The deviation vector can then be decomposed into

Yµ(~θ,λ) =−ξ1(~θ,λ)Eµ
1−ξ2(~θ,λ)Eµ

2−ξ0(~θ,λ) k̃µ . (105)

Thus, the two-dimensional vector~ξ(~θ,λ) with componentsξ1,2(~θ,λ) describes the transverse separation
of two light rays at affine parameterλ, whereasξ0 allows for a deviation component along the beam
direction. Due to the linearisation introduced above,~ξ depends linearly on~θ, and the choice ofλ assures
that d~ξ/dλ(λ = 0) =~θ. Hence, we can write the linear propagation equation

~ξ(λ) = D(λ)~θ . (106)

The 2×2 matrixD satisfies the Jacobi differential equation

d2D(λ)
dλ2 = T (λ)D(λ) , (107)

with initial conditions

D(0) = O and
dD
dλ

(0) = I . (108)

Theoptical tidal matrixT (λ) is symmetric,

T (λ) =
(

R (λ)+ ℜ[F (λ)] ℑ[F (λ)]
ℑ[F (λ)] R (λ)−ℜ[F (λ)]

)
, (109)

and its components depend on the curvature of the metric.ℜ(z) andℑ(z) denote the real and imaginary
parts of the complex numberz. Specifically,

R (λ) =−1
2

Rµν(λ)k̃µ(λ)k̃ν(λ) , (110)

whereRµν(λ) is the Ricci tensor atγµ
0(λ). The complex quantityF (λ) is more complicated and depends

on the Weyl curvature tensor atγµ
0λ). Thesource of convergenceR (λ) leads to an isotropic focusing of

light bundles, in that a circular light beam continues to have a circular cross section. In contrast, a non-zero
source of shearF (λ) causes an anisotropic focusing, changing the shape of the light bundle. For a similar
set of equations, see, e.g. Blandford et al. (1991) and Peebles (1993).
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To summarise this subsection, the transverse separation vector~ξ of two infinitesimally close light rays,
enclosing an angle~θ at the observer, depends linearly on~θ. The matrix which describes this linear mapping
is obtained from the Jacobi differential equation (107). The optical tidal matrixT can be calculated from
the metric. This exact result from General Relativity is of course not easily applied to practical calculations
in general space-times, as one first has to calculate the null geodesicγµ

0(λ), and from that the components of
the tidal matrix have to be determined. However, as we shall show next, the equations attain rather simple
forms in the case of weak gravitational fields.

3.2.2 Specialisation to Weak Gravitational Fields

We shall now specialise the transport equation (107) to the situation of a homogeneous and isotropic uni-
verse, and to weak gravitational fields. In a metric of the Robertson-Walker type (2, page 7), the source of
shearF must vanish identically because of isotropy; otherwise preferred directions would exist. Initially
circular light bundles therefore remain circular. Hence, the optical tidal matrixT is proportional to the
unit matrix, T (λ) = R (λ)I , and the solution of (107) must be of the formD(λ) = D(λ)I . According
to (106), the functionD(λ) is the angular-diameter distance as a function of the affine parameter. As we
shall demonstrate next, this function indeed agrees with the angular diameter distance as defined in (43,
page 14).

To do so, we first have to findR (λ). The Ricci tensor deviates from the Einstein tensor by two terms
proportional to the metric tensorgµν, one involving the Ricci scalar, the other containing the cosmological
constant. These two terms do not contribute to (110), sincek̃µ is a null vector. We can thus replace
the Ricci tensor in (110) by the energy-momentum tensor according to Einstein’s field equation. Since
k0 = c−1ω = (1+ z)c−1ωo, we havek̃0 = −(1+ z), and the spatial components ofk̃µ are described by a
direction and the constraint thatk̃µ is a null vector. Then, using the energy-momentum tensor of a perfect
fluid with densityρ and pressurep, (110) becomes

R (λ) =−4πG
c2

(
ρ +

p
c2

)
(1+z)2 . (111)

Specialising to a universe filled with dust, i.e.p = 0, we find from (16, page 9) and (19, page 10)

R (λ) =−3
2

(
H0

c

)2

Ω0 (1+z)5 . (112)

The transport equation (107) then transforms to

d2D
dλ2 =−3

2

(
H0

c

)2

Ω0 (1+z)5D . (113)

In order to show that the solution of (113) with initial conditionsD = 0 and dD = dλ atλ = 0 is equivalent
to (43, page 14), we proceed as follows. First we note that (43) forz1 = 0 can be written as an initial-value
problem,

d2

dw2

(
Dang

a

)
=−K

(
Dang

a

)
, (114)

with Dang(0) = 0 and dDang = dw at w = 0, because of the properties of the functionfK ; cf. (4, page 8).
Next, we need a relation betweenλ andw. The null component of the photon geodesic isx0 = c(t0− t).
Then, from dxµ = k̃µdλ, we obtain dλ =−acdt. Using dt = ȧ−1da, we find

da =− ȧ
ca

dλ , or dz=
ȧ

ca3 dλ . (115)

Sincecdt = −adw for null rays, we have ˙a−1da = dt = −ac−1dw, which can be combined with (115) to
yield

dλ = a2dw . (116)
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We can now calculate the analogous expression of (114) forD,

d2

dw2

(
D
a

)
= a2 d

dλ

[
a2 d

dλ

(
D
a

)]
= a3D′′−a2a′′D , (117)

where a prime denotes differentiation with respect toλ. From (115),a′ =−(ac)−1ȧ, and

a′′ =
1
2

d(a′)2

da
=

1
2c2

d
da

(
ȧ2

a2

)
=

1
2c2

dH2

da
, (118)

with H given in (31, page 11). Substituting (113) into the first term on the right-hand side of (117), and
(118) into the second term, we immediately see thatD satisfies the differential equation (114). SinceD has
the same initial conditions asDang, they indeed agree.

For computational convenience, we can also transform (113) into a differential equation forD(z). Using
(115) and (31), one finds

(1+z)
[
(1+ Ω0z)−ΩΛ

(
1− 1

(1+z)2

)]
d2D
dz2

+
[

7
2

Ω0z+
Ω0

2
+3−ΩΛ

(
3− 2

(1+z)2

)]
dD
dz

+
3
2

Ω0D = 0 . (119)

We next turn to the case of a weak isolated mass inhomogeneity with a spatial extent small compared
to the Hubble distancecH−1

0 , like galaxies or clusters of galaxies. In that case, the metric can locally be
approximated by the post-Minkowskian line element

ds2 =
(

1+
2Φ
c2

)
c2dt2−

(
1− 2Φ

c2

)
dx2 , (120)

where dx2 is the line element of Euclidean three-space, andΦ is the Newtonian gravitational potential
which is assumed to be weak,Φ� c2. Calculating the curvature tensor of the metric (120), and using
Poisson’s equation forΦ, we find that for a light ray which propagates into the three-direction, the sources
of convergence and shear are

R =−4πG
c2 ρ , and F =− 1

c2 (Φ,11−Φ,22+2iΦ,12) . (121)

Now the question is raised as to how an isolated inhomogeneity can be combined with the background
model of an expanding universe. There is no exact solution of Einstein’s field equations which describes a
universe with density fluctuations, with the exception of a few very special cases such as the Swiss-Cheese
model (Einstein & Strauss 1945). We therefore have to resort to approximation methods which start from
identifying ‘small’ parameters of the problem, and expanding the relevant quantities into a Taylor series
in these parameters. If the length scales of density inhomogeneities are much smaller than the Hubble
lengthcH−1

0 , the associated Newtonian gravitational potentialΦ� c2 (note that this does not imply that
the relative density fluctuations are small!), and the peculiar velocitiesv� c, then an approximate metric
is

ds2 = a2(τ)
[(

1+
2Φ
c2

)
c2dτ2−

(
1− 2Φ

c2

)(
dw2 + f 2

K(w)dω2)] , (122)

where dτ = a−1dt is the conformal time element, andΦ satisfies Poisson’s equation with source∆ρ, the
density enhancement or reduction relative to the mean cosmic density (Futamase 1989; Futamase & Sasaki
1989; Jacobs et al. 1993).

In the case of weak metric perturbations, the sources of convergence and shear of the background metric
and the perturbations can be added. Recalling that bothR andF are quadratic iñkµ ∝ (1+ z), so that the
expressions in (121) have to be multiplied by(1+z)2, we find for the optical tidal matrix

Ti j (λ) =−3
2

(
H0

c

)2

Ω0 (1+z)5 δi j −
(1+z)2

c2 (2Φ,i j + δi j Φ,33) , (123)
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where we have assumed that the local Cartesian coordinates are chosen such that the light ray propagates
in x3-direction. The same result is obtained from the metric (122).

The lens equation as discussed in Sect. 3.1 can now be derived from the previous relations. To do so,
one has to assume a geometrically thin matter distribution, i.e. one approximates the density perturbation
∆ρ by a distribution which is infinitely thin in the direction of photon propagation. It is then characterised
by its surface mass densityΣ(~ξ). The corresponding Newtonian potentialΦ can then be inserted into (123).
The integration overΦ,33 along the light ray vanishes, and (107) can be employed to calculate the change
of dD/dλ across the thin matter sheet (the lens plane), whereas the components ofD far from the lens
plane are given by a linear combination of solutions of the transport equation (113). Continuity and the
change of derivative atλd, corresponding to the lens redshiftzd, then uniquely fix the solution. IfD(~θ,λs)
denotes the solution at redshiftzs, thenD(~θ,λs) = ∂~η/∂~θ in the notation of Sect. 3.1. Line integration of
this relation then leads to the lens equation (86). See Seitz et al. (1994) for details, and Pyne & Birkinshaw
(1996) for an alternative derivation.
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4 Principles of Weak Gravitational Lensing

4.1 Introduction

If the faint, and presumably distant, galaxy population is observed through the gravitational field of a
deflector, the appearance of the galaxies is changed. The tidal component of the gravitational field distorts
theshapesof galaxy images, and the magnification associated with gravitational light deflection changes
their apparentbrightness. If all galaxies were intrinsically circular, any galaxy image would immediately
provide information on the local tidal gravitational field. With galaxies being intrinsically elliptical, the
extraction of significant information from individual images is impossible, except forgiant luminous arcs
(see Fig. 10, page 23, for an example) whose distortion is so extreme that it can easily be determined.

However, assuming that the galaxies are intrinsically randomly oriented6, the strength of the tidal grav-
itational field can be inferred from a sample of galaxy images, provided its net ellipticity surmounts the
Poisson noise caused by the finite number of galaxy images in the sample and by the intrinsic ellipticity
distribution.

Since lensing conserves surface brightness, magnification increases the size of galaxy images at a fixed
surface-brightness level. The resulting flux enhancement enables galaxies to be seen down to fainter intrin-
sic magnitudes, and consequently the local number density of galaxy images above a certain flux threshold
can be altered by lensing.

In this section, we introduce the principles of weak gravitational lensing. In Sect. 4.2, we present the
laws of the transformation between source and image ellipticities and sizes, and in particular we introduce a
convenient definition of theellipticity of irregularly-shaped objects. Sect. 4.3 focuses on the determination
of the local tidal gravitational field from an ensemble of galaxy images. We derive practical estimators for
the shear and compare their relative merits. The effects of magnification on the observed galaxy images
are discussed in Sect. 4.4. We derive an estimate for the detectability of a deflector from its weak-lensing
imprint on galaxy-image ellipticities in Sect. 4.5, and the final subsection 4.6 is concerned with practical
aspects of the measurement of galaxy ellipticities.

4.2 Galaxy Shapes and Sizes, and their Transformation

If a galaxy had elliptical isophotes, its shape and size could simply be defined in terms of axis ratio and
area enclosed by a boundary isophote. However, the shapes of faint galaxies can be quite irregular and not
well approximated by ellipses. In addition, observed galaxy images are given in terms of pixel brightness
on CCDs. We therefore require a definition of size and shape which accounts for the irregularity of images,
and which is well adapted to observational data.

Let I(~θ) be the surface brightness of a galaxy image at angular position~θ. We first assume that the

galaxy image is isolated, so thatI can be measured to large angular separations from the centre~̄θ of the
image,

~̄θ≡
∫

d2θqI [I(~θ)]~θ∫
d2θqI [I(~θ)]

, (124)

whereqI (I) is a suitably chosen weight function. For instance, ifqI (I) = H(I − Ith) is the Heaviside step

function,~̄θ is the centre of the area enclosed by a limiting isophoteI = Ith. Alternatively, if qI (I) = I , ~̄θ is

the centre of light. As a third example, ifqI (I) = I H(I − Ith), ~̄θ is the centre of light within the limiting
isophoteI = Ith. Having chosenqI (I), we define the tensor of second brightness moments,

Qi j =
∫

d2θqI [I(~θ)] (θi− θ̄i)(θ j − θ̄ j)∫
d2θqI [I(~θ)]

, i, j ∈ {1,2} , (125)

6This assumption is not seriously challenged. Whereas galaxies in a cluster may have non-random orientations relative to the clus-
ter centre, or pairs of galaxies may be aligned due to mutual tidal interaction, the faint galaxies used for lensing studies are distributed
over a large volume enclosed by a narrow cone with opening angle selected by the angular resolution of the mass reconstruction (see
below) and length comparable to the Hubble radius, since the redshift distribution of faint galaxies is fairly broad. Thus, the faint
galaxies typically have large spatial separations, which is also reflected by their weak two-point angular auto-correlation (Brainerd
et al. 1995; Villumsen et al. 1997).
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(e.g. Blandford et al. 1991). In writing (124) and (125), we implicitly assumed thatqI (I) is chosen such
that the integrals converge. We can now define thesizeof an image in terms of the two invariants of the
symmetric tensorQ. For example, we can define the size by

ω =
(
Q11Q22−Q2

12

)1/2
, (126)

so that it is proportional to the solid angle enclosed by the limiting isophote ifq(I) is a step function. We
quantify theshapeof the image by thecomplex ellipticity

χ≡ Q11−Q22+2iQ12

Q11+Q22
. (127)

If the image has elliptical isophotes with axis ratior ≤ 1, thenχ = (1− r2)(1+ r2)−1exp(2iϑ), where
the phase ofχ is twice the position angleϑ of the major axis. This definition assures that the complex
ellipticity is unchanged if the galaxy image is rotated byπ, for this rotation leaves an ellipse unchanged.

If we define the centre of the source~̄β and the tensor of second brightness momentsQ(s)
i j of the source

in complete analogy to that of the image, i.e. withI(~θ) replaced byI (s)(~β) in eqs. (124) and (125), and
employ the conservation of surface brightness (94, page 31) and the linearised lens equation (97, page 31),
we find that the tensors of second brightness moments of source and image are related through

Q(s) = A QAT = A QA , (128)

whereA ≡ A(~̄θ) is the Jacobian matrix of the lens equation at position~̄θ. Defining further the complex
ellipticity of the sourceχ(s) in analogy to (127) in terms ofQ(s), ellipticities transform according to

χ(s) =
χ−2g+g2χ∗

1+ |g|2−2ℜ(gχ∗)
(129)

(Schneider & Seitz 1995; similar transformation formulae were previously derived by Kochanek 1990 and
Miralda-Escude 1991), where the asterisk denotes complex conjugation, andg is thereduced shear

g(~θ)≡ γ(~θ)

1−κ(~θ)
. (130)

The inverse transformation is obtained by interchangingχ andχ(s) and replacinggby−g in (129). Equation
(129) shows that the transformation of image ellipticities depends only on the reduced shear, and not on
the shear and the surface mass density individually. Hence, the reduced shear or functions thereof are the
only quantities accessible through measurements of image ellipticities. This can also immediately be seen
by writing A as

A = (1−κ)
(

1−g1 −g2

−g2 1+g1

)
. (131)

The pre-factor(1− κ) only affects the size, but not the shape of the images. From (128) and (126), we
immediately see that the sizes of source and image are related through

ω = µ(~θ)ω(s) . (132)

We point out that the dimension-less surface mass densityκ, and therefore also the shearγ, depend
not only on the redshift of the lens, but also on the redshift of the sources, because the critical surface
mass density (91, page 31) involves the source redshift. More precisely, for fixed lens redshiftzd, the lens
strength is proportional to the distance ratioDds/Ds. This implies that the transformation (129) generally
also depends on source redshift. We shall return to these redshift effects in Sect. 4.3, and assume for now
that the lens redshiftzd is sufficiently small so that the ratioDds/Ds is approximately the same for all faint
galaxy images.
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Instead ofχ, we can define different ellipticity parameters (see Bonnet & Mellier 1995). One of these
definitions turns out to be quite useful, namely

ε≡ Q11−Q22+2iQ12

Q11+Q22+2(Q11Q22−Q2
12)1/2

, (133)

which we shall also callcomplex ellipticity. (Since we shall use the notationχ andε consistently throughout
this article, there should be no confusion from using the same name for two different quantities.)ε has the
same phase asχ, and for elliptical isophotes with axis ratior ≤ 1, |ε|= (1− r)(1+ r)−1. ε andχ are related
through

ε =
χ

1+(1−|χ|2)1/2
, χ =

2ε
1+ |ε|2

. (134)

The transformation between source and image ellipticity in terms ofε is given by

ε(s) =


ε−g

1−g∗ε
for |g| ≤ 1

1−gε∗

ε∗−g∗
for |g|> 1

(135)

(Seitz & Schneider 1997), and the inverse transformation is obtained by interchangingε andε(s) and re-
placingg by−g in (135). Although the transformation ofε appears more complicated because of the case
distinction, we shall see in the next subsection that it is often useful to work in terms ofε rather thanχ;
cf. eq. (140) below.

We note in passing that the possible polarisation of light of faint galaxies (Audit & Simmons 1999)
or faint radio sources (Surpi & Harari 1999) may offer a different channel to detect shear. The orienta-
tion of the polarisation is unchanged in weak-field light deflection (e.g., Schneider et al. 1992, Faraoni
1993). Gravitational shear will turn the geometrical image, but not the polarisation of a galaxy. If the
orientation of a galaxy is intrinsically strongly correlated with the direction of the polarisation of its light,
then a mismatch of the observed directions provides information on the lensing distortion. However, the
polarisation properties of faint galaxies are mostly unknown, and it is unclear whether such an intrinsic
polarisation-orientation correlation exists.

For the case of weak lensing, which we define for the purpose of this section byκ� 1, |γ| � 1, and
thus |g| � 1, (135) becomesε ≈ ε(s) + g, provided|ε| ≈ |ε(s)| . 1/2. Likewise, eq. (129) simplifies to
χ≈ χ(s) +2g in this case.

4.3 Local Determination of the Distortion

As mentioned earlier, the observed ellipticity of a single galaxy image provides only little information
about the local tidal gravitational field of the deflector, for the intrinsic ellipticity of the source is unknown.
However, based on the assumption that the sources are randomly oriented, information on the local tidal
field can be inferred from a local ensemble of images. Consider for example galaxy images at positions~θi

close enough to a fiducial point~θ so that the local lens propertiesκ andγ do not change appreciably over
the region encompassing these galaxies. The expectation value of their corresponding source ellipticities
is assumed to vanish,

E(χ(s)) = 0 = E(ε(s)) . (136)

4.3.1 All Sources at the Same Redshift

We first consider the case that all sources are at the same redshift. Then, as mentioned following eq. (97,
page 31), the ellipticity of a circular source determines the ratio of the local eigenvalues of the Jacobian
matrix A . This also holds for the net image ellipticity of an ensemble of sources with vanishing net
ellipticity. From (95, page 31), we find for the ratio of the eigenvalues ofA in terms of the reduced shearg

r =
1∓|g|
1±|g|

. (137)
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Interestingly, if we replaceg by 1/g∗, r switches sign, but|r| and the phase ofε remain unchanged. The
sign ofr cannot be determined observationally, and hence measurements cannot distinguish betweeng and
1/g∗. This is calledlocal degeneracy. Writing detA = (1− κ)2(1− |g|2), we see that the degeneracy
betweeng and 1/g∗ means that we cannot distinguish between observed images inside a critical curve (so
that detA < 0 and|g| > 1) or outside. Therefore, only functions ofg which are invariant underg→ 1/g∗

are accessible to (local) measurements, as for instance thecomplex distortion

δ≡ 2g
1+ |g|2

. (138)

Replacing the expectation value in (136) by the average over a local ensemble of image ellipticities,
〈χ(s)〉 ≈ E(χ(s)) = 0, Schneider & Seitz (1995) showed that〈χ(s)〉= 0 is equivalent to

∑
i

ui
χi−δ

1−ℜ(δχ∗i )
= 0 , (139)

where theui are weight factors depending on|~θi −~θ| which can give larger weight to galaxies closer to
the fiducial point. Additionally, theui can be chosen such as to account for measurement uncertainties
in the image ellipticities by giving less weight to images with larger measurement error. Equation (139)
has a unique solutionδ, so that the distortion can locally be determined. It is readily solved by a quickly
converging iteration starting fromδ = 〈χ〉.

Theδ obtained from (139) is an unbiased estimate of the distortion. Its dispersion about the true value
depends on the dispersionσχ of the intrinsic ellipticity distribution, and on the number of galaxy images.
A fairly accurate estimate of therms error of δ is σδ ≈ σχ N−1/2, whereN is the effective number of

galaxies used for the local average,N = (∑ui)
2(∑u2

i

)−1
. This overestimates the error for large values of

|δ| (Schneider & Seitz 1995). It is important to note that the expectation value ofχ is notδ, but differs from
it by a factor which depends both on|δ| and the intrinsic ellipticity distribution of the sources. In contrast
to that, it follows from (136) and (135) that the expectation value of the complex ellipticityε of the images
is the reduced shear or its inverse, E(ε) = g if |g|< 1 and E(ε) = 1/g∗ if |g|> 1 (Schramm & Kayser 1995;
Seitz & Schneider 1997). Hence,

〈ε〉= ∑i uiεi

∑i ui
(140)

is an unbiased local estimate forg or 1/g∗. The ellipticity parameterε is useful exactly because of this
property. If one deals with sub-critical lenses (i.e. lenses which are not dense enough to have critical
curves, so that detA(~θ) > 0 everywhere), or with the region outside the critical curves in critical lenses,
the degeneracy betweeng and 1/g∗ does not occur, and〈ε〉 is a convenient estimate for the local reduced
shear. Therms error of this estimate is approximatelyσg ≈ σε (1− |g|2)N−1/2 (Schneider et al. 2000),
whereσε is the dispersion of the intrinsic source ellipticityε(s). As we shall see in a moment,ε is the more
convenient ellipticity parameter when the sources are distributed in redshift.

The estimates forδ andg discussed above can be derived without knowing the intrinsic ellipticity dis-
tribution. If, however, the intrinsic ellipticity distribution is known (e.g. from deepHubble Space Telescope
images), we can exploit this additional information and determineδ (or g) through a maximum-likelihood
method (Gould 1995; Lombardi & Bertin 1998b). Depending on the shape of the intrinsic ellipticity distri-
bution, this approach can yield estimates of the distortion which have a smallerrmserror than the estimates
discussed above. However, if the intrinsic ellipticity distribution is approximately Gaussian, thermserrors
of both methods are identical. It should be noted that the intrinsic ellipticity distribution is likely to depend
on the apparent magnitude of the galaxies, possibly on their redshifts, and on the wavelength at which they
are observed, so that this distribution is not easily determined observationally. Knowledge of the intrinsic
ellipticity distribution can also be used to determineδ from the orientation of the images (that is, the phase
of χ) only (Kochanek 1990; Schneider & Seitz 1995; Deiser 1995, unpublished). This may provide a use-
ful alternative to the method above since the orientation of images is much less affected by seeing than the
modulus ofχ. We return to the practical estimate of the image ellipticities and the corresponding distortion
in Sect. 4.5.
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In the case of weak lensing, defined byκ� 1 and|γ| � 1, implying |g| � 1, we find from (134–139)
that

γ≈ g≈ δ
2
≈ 〈ε〉 ≈ 〈χ〉

2
. (141)

4.3.2 Sources Distributed in Redshift

So far, we assumed that all source galaxies are at the same redshift, or more precisely, that the ratioDds/Ds

between the lens-source and observer-source distances is the same for all sources. This ratio enters into
the scaling (91, page 31) of the physical surface mass densityΣ to the dimension-less convergenceκ. The
deflection angle, the deflection potential, and the shear are all linear inκ, so that the distance ratioDds/Ds

is sufficient to specify the lens strength as a function of source redshift. Providedzd . 0.2, this ratio is
fairly constant for sources with redshiftzs& 0.8, so that the approximation used so far applies to relatively
low-redshift deflectors. However, for higher-redshift lenses, the redshift distribution of the sources must
explicitly be taken into account.

For a fixed lens redshiftzd, the dimension-less surface mass density and the shear depend on the source
redshift. We define

Z(z) ≡ limz→∞ Σcr(zd,z)
Σcr(zd,z)

H(z−zd)

=
fK [w(zd,z)]
fK [w(0,z)]

fK [w(0,∞)]
fK [w(zd,∞)]

H(z−zd) , (142)

using the notation of Sect. 2.1 (page 7). The Heaviside step function accounts for the fact that sources
closer than the deflector are not lensed. Then,κ(~θ,z) = Z(z)κ(~θ), andγ(~θ,z) = Z(z)γ(~θ) for a source atz,
andκ andγ refer to a fictitious source at redshift infinity. The functionZ(z) is readily evaluated for any
cosmological model using (41, page 13) and (4, page 8). We plotZ(z) for various cosmologies and lens
redshifts in Fig. 12.

Figure 12: The functionZ(z) defined in eq. (142) describes the relative lens strength as a function of source
redshiftz. We showZ(z) for three cosmological models as indicated in the figure, and for three values for
the lens redshift,zd = 0.2,0.5,0.8. By definition,Z(z)→ 0 asz→ zd, andZ(z)→ 1 asz→ ∞. For sources
close to the deflector,Z(z) varies strongly in a way depending relatively weakly on cosmology.
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The expectation value for the ellipticity of images with redshiftz now becomes

E[ε(z)] = g(z) =


Z(z)γ

1−Z(z)κ
for µ(z)≥ 0

1−Z(z)κ
Z(z)γ∗

for µ(z)< 0

, (143)

whereµ(z) is the magnification as a function of source redshift,

µ(z) =
{

[1−Z(z)κ]2−Z2(z)|γ|2
}−1

. (144)

We refer tosub-critical lensing ifµ(z)> 0 for all redshifts, which is equivalent to 1−κ−|γ|> 0.
Without redshift information, only the mean ellipticity averaged over all redshifts can be observed. We

first consider this case, for which the source redshift distribution is assumed to be known. We define the
probability pz(z)dz that a galaxy image (in the selected magnitude range) has a redshift within dzof z. The
image redshift distribution will in general be different from the source redshift distribution since magnified
sources can be seen to higher redshifts than unlensed ones. Therefore, the redshift distribution will depend
on the local lens parametersκ andγ through the magnification (144). If, however, the magnification is
small, or if the redshift distribution depends only weakly on the flux, the simplification of identifying the
two redshift distributions is justified. We shall drop it later. Givenpz(z), the expectation value of the image
ellipticity becomes the weighted average

E(ε) =
∫

dz pz(z)E[ε(z)] = γ
[
X(κ,γ)+ |γ|−2Y(κ,γ)

]
, (145)

with

X(κ,γ) =
∫

µ(z)≥0
dz pz(z)

Z(z)
1−Z(z)κ

,

Y(κ,γ) =
∫

µ(z)<0
dz pz(z)

1−Z(z)κ
Z(z)

, (146)

and the integration boundaries depend on the values ofκ and|γ| through the magnification.
If the lens is sub-critical,µ(z)> 0 for all z. ThenY = 0, and only the first term in (145) remains. Also,

X no longer depends onγ in this case, and E(ε) = γX(κ). An accurate approximation forX(κ), valid for
κ. 0.6, has been derived in Seitz & Schneider (1997),

γ =
E(ε)
〈Z〉

(
1− 〈Z

2〉
〈Z〉

κ
)
, (147)

where〈Zn〉 ≡
∫

dz pz(z)Zn.
Specialising further to the weak-lensing regime, the expectation value of the image ellipticity is simply

E(ε)≈ 〈Z〉γ . (148)

Thus, in the weak-lensing case, a source redshift distribution can be collapsed on a single redshiftzs

satisfyingZ(zs) = 〈Z〉.
We now drop the simplification introduced above and definen0(S,z)dSdz as the number of galaxy

images per unit solid angle with flux within dSof Sand redshift within dz of z in the absence of lensing.
At a point~θ with surface mass densityκ and shearγ, the number density can be changed by magnification.
Images of a fixed set of sources are distributed over a larger solid angle, reducing the number density by a
factorµ−1(z). On the other hand, the magnification allows the observation of fainter sources. In total, the
expected number density becomes

n(S,z) =
1

µ2(z)
n0

(
S

µ(z)
,z

)
, (149)
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with µ(z) given in (144). This yields the redshift distribution

p(z;S,κ,γ) =
n0
[
µ−1(z)S,z

]
µ2(z)

∫
dz′µ−2(z′)n0 [µ−1(z)S,z′]

, (150)

which depends on the fluxSand the local lens parametersκ andγ through the magnification. This function
can now be substituted forpz(z) in eq. (145).

4.3.3 Practical Estimates of the Shear

We saw before that〈ε〉= ∑i uiεi/∑i ui is an unbiased estimate of the local reduced shearg if all sources are
at the same redshift. We now generalise this result for sources distributed in redshift. Then, the expectation
value ofε is no longer a simple function ofκ andγ, and therefore estimates ofγ for an assumed value for
κ will be derived.

We first assume that redshifts for individual galaxies are unavailable, but that only the normalised
redshift distributionpz(z) is known, or the distribution in eq. (150). Replacing the expectation value of the
image ellipticity by the mean, eq. (145) implies that the solutionγ(1) of

γ =
[
X(κ,γ)+ |γ|−2Y(κ,γ)

]−1 〈ε〉 (151)

provides an unbiased estimator for the shearγ. This is not a particularly explicit expression for the shear
estimate, but it is still extremely useful, as we shall see in the next section. The shear estimate considerably
simplifies if we assume a sub-critical lens. Then,

γ(1,sc) = 〈ε〉X−1(κ)≈ 〈ε〉
〈Z〉

(
1− 〈Z

2〉
〈Z〉

κ
)
, (152)

where we used eq. (147) in the second step. Specialising further to weak lensing, the shear estimate
simplifies to

γ(1,wl) = 〈ε〉〈Z〉−1 . (153)

Next, we assume that the redshifts of all galaxy images are known. At first sight, this appears entirely
unrealistic, because the galaxy images are so faint that a complete spectroscopic survey at the interesting
magnitude limits seems to be out of reach. However, it has become clear in recent years that accurate
redshift estimates, the so-called photometric redshifts, can be obtained from multi-colour photometry alone
(see, e.g., Connolly et al. 1995). The accuracy of photometric redshifts depends on the number of wave
bands for which photometry is available, the photometric accuracy, and the galaxy type; typical errors are
∆z∼ 0.1 for faint, high-redshift galaxies. This uncertainty is small compared to the range over which the
functionZ(z) varies appreciably, so that photometric redshifts are (almost) as good as precise spectroscopic
redshifts for our purposes.

If the redshiftszi of the galaxies are known, more precise shear estimates than before can be derived.
Consider the weighted sumF ≡ ∑i ui |εi −E(εi)|2, where the expectation value is given by eq. (143), and
Z = Zi ≡ Z(zi). For an assumed value ofκ, an unbiased estimate ofγ is given by theγ(2) minimisingF .
Due to the case distinction in eq. (143), this estimator is complicated to write down analytically, but can
easily be calculated numerically.

This case distinction is no longer necessary in the sub-critical case, for which the resulting estimator
reads

γ(2,sc) = ∑i ui Zi εi (1−Ziκ)−1

∑i ui Z2
i (1−Ziκ)−2

. (154)

In the case of weak lensing, this becomes

γ(2,wl) = ∑i ui Zi εi

∑i ui Z2
i

. (155)
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We now compare the accuracy of the shear estimates with and without redshift information of the
individual galaxies. For simplicity, we assume sub-critical lensing and set all weight factors to unity,
ui = 1. The dispersion of the estimateγ(1,sc) = (N X)−1 ∑i εi for N galaxy images is

σ2
(

γ(1,sc)
)

= E
(
|γ(1,sc)|2

)
−|γ|2 = [N X(κ)]−2 E

(
∑
i j

εi ε∗j

)
−|γ|2 . (156)

The expectation value in the final expression can be estimated noting that the image ellipticity is to first

order given byεi = ε(s)
i + γ, and that the intrinsic ellipticities are uncorrelated. If we further assume that

the redshifts of any two galaxies are uncorrelated, we find

E
(
εi ε∗j

)
≈

〈
ZiZ j

(1−Ziκ)(1−Z jκ)

〉
|γ|2 + δi j σ2

ε

= X2(κ)|γ|2 + δi j
(
σ2

X|γ|2 + σ2
ε
)
, (157)

where we used the definition (146) ofX(κ), and definedσ2
X(κ)≡ 〈Z2(1−Zκ)−2〉−X2. Angular brackets

denote averages over the redshift distributionpz. Inserting (157) into (156) yields

σ2
(

γ(1,sc)
)

=
σ2

X|γ|2 + σ2
ε

N X2 . (158)

Likewise, the dispersion of the estimateγ(2,sc) is

σ2
(

γ(2,sc)
)

=
∑i j ZiZ j(1−Ziκ)−1(1−Z jκ)−1E

(
εi ε∗j

)
[
∑i Z

2
i (1−Ziκ)−2

]2 −|γ|2

=
σ2

ε

∑i Z
2
i (1−Ziκ)−2

≈ σ2
ε

N[X2(κ)+ σ2
X(κ)]

. (159)

We used eq. (157), but noted thatZ is now no longer a statistical variable, so that we can putσ2
X = 0

in (157). In the final step, we have replaced the denominator by its expectation value under ensemble
averaging. We then find the ratio of the dispersions,

σ2
(

γ(1,sc)
)

σ2
(
γ(2,sc)

) =
(

1+ |γ|2 σ2
X

σ2
ε

)(
1+

σ2
X

X2

)
. (160)

We thus see that the relative accuracy of these two estimates depends on the fractional width of the distri-
bution ofZ/(1−Zκ), and on the ratio between the dispersion of this quantity and the ellipticity dispersion.
Through its explicit dependence on|γ|2, and through the dependence ofσX andX onκ, the relative accuracy
also depends on the lens parameters. Quantitative estimates of (160) are given in Fig. 13.

The figure shows that the accuracy of the shear estimate is noticeably improved, in particular once the
lens redshift becomes a fair fraction of the mean source redshift. The dependence of the lens strength
on the deflector redshift implies that the lens signal will become smaller for increasing deflector redshift,
so that the accuracy gained by redshift information becomes significant. In addition, the assumptions
used to derive (158) were quite optimistic, since we have assumed in (157) that the sample of galaxies
over which the average is taken is a fair representation of the galaxy redshift distributionpz(z). Given
that these galaxies come from a small area (small enough to assume thatκ andγ are constant across this
area), and that the redshift distribution of observed galaxies in pencil beams shows strong correlations
(see, e.g., Broadhurst et al. 1990, Steidel et al. 1998, Cohen et al. 1999), this assumption is not very
realistic. Indeed, the strong clustering of galaxy redshifts means that the effectiveσX will be considerably
larger than the analytical estimate used above. The noise in the local determination of the shear due to
the correlated galaxy redshifts does not decrease with the numberN of galaxies used, and, therefore, its
relative contribution becomes more important for larger number densities of source galaxies (Schneider &
Morales-Merino 2000). In any case, redshift information on the source galaxies will substantially improve
the accuracy of weak lensing results.
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Figure 13: The fractional accuracy gain in the shear estimate due to the knowledge of the source redshifts
is plotted, more precisely the deviation of the square root of (160) from unity in per cent. The four curves
shown correspond to two different values of the mean source redshift, and to the cases without lensing
(κ = 0 = γ), and with lensing (κ = 0.3 = |γ|), labelled NL and L, respectively. We assumed the redshift
distribution (69) withβ = 3/2, and an Einstein-de Sitter cosmology. As expected, the higher the lens
redshiftzd, the more substantially is the shear estimate improved by redshift information, since for low
values ofzd, the functionZ(z) is nearly constant. Furthermore, the lower the mean redshift of the source
distribution, the more important the knowledge of individual redshifts becomes, for example to distinguish
between foreground and background galaxies. Finally, redshift information is relatively more important for
larger lens strength.

4.4 Magnification Effects

In addition to the distortion of imageshapes, by which the (reduced) shear can be measured locally, grav-
itational light deflection also magnifies the images, leaving the surface brightness invariant. The magnifi-
cation changes the size, and therefore the flux, of individual galaxy images. Moreover, for a fixed set of
sources, the number density of images decreases by a factorµ as the sky is locally stretched. Combining
the latter effect with the flux magnification, the lensed and unlensed source counts are changed according
to (149). Two strategies to measure the magnification effect have been suggested in the literature, namely
either through the change in the local source counts, perhaps combined with the associated change (150)
in the redshift distribution (Broadhurst et al. 1995), or through the change of image sizes at fixed surface
brightness (Bartelmann & Narayan 1995).

4.4.1 Number Density Effect

Let n0(>S,z)dzbe the unlensed number density of galaxies with redshift within dzof zand with flux larger
thanS. Then, at an angular position~θ where the magnification isµ(~θ,z), the number counts are changed
according to (149),

n(> S,z) =
1

µ(~θ,z)
n0

(
>

S

µ(~θ,z)
,z

)
. (161)

Accordingly, magnification can either increase or decrease the local number counts, depending on the shape
of the unlensed number-count function. This change of number counts is calledmagnification bias, and is
a very important effect for gravitational lensing of QSOs (see Schneider et al. 1992 for references).7

7Bright QSOs have a very steep number-count function, and so the flux enhancement of the sources outweighs the number
reduction due to the stretching of the sky by a large margin. Whereas the lensing probability even for a high-redshift QSO is probably
too small to affect the overall sources counts significantly, the fraction of multiply-imaged QSOs in flux-limited samples is increased
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Magnification allows the observation of fainter sources. Since the flux from the sources is correlated
with their redshift, the redshift distribution is changed accordingly,

p(z;> S,κ,γ) =
n0
[
> µ−1(z)S,z

]
µ(z)

∫
dz′µ−1(z′)n0 [> µ−1(z′)S,z′]

, (162)

in analogy to the redshift distribution (150) at fixed fluxS. Since the objects of interest here are very
faint, spectroscopic redshift information is in general difficult to obtain, and so one can only observe the
redshift-integrated counts

n(> S) =
∫

dz
1

µ(z)
n0
(
> µ−1(z)S,z

)
. (163)

The number counts of faint galaxies are observed to very closely follow a power law over a wide range of
fluxes, and so we write the unlensed counts as

n0(> S,z) = aS−α p0(z;S) , (164)

where the exponentα depends on the wave band of the observation (e.g. Smail et al. 1995a), andp0(z;S)
is the redshift probability distribution of galaxies with flux> S. Whereas this redshift distribution is fairly
well known for brighter galaxies which are accessible to current spectroscopy, little is known about the
faint galaxies of interest here. The ratio of the lensed and unlensed source counts is then found by inserting
(164) into (163),

n(> S)
n0(> S)

=
∫

dzµα−1(z) p0
(
z;µ−1(z)S

)
. (165)

We should note that the lensed counts do not strictly follow a power law inS, for p0 depends onz. Since
the redshift distributionp0(z,S) is currently unknown, the change of the number counts due to the magni-
fication cannot be predicted. For very faint flux thresholds, however, the redshift distribution is likely to
be dominated by galaxies at relatively high redshift. For lenses at fairly small redshift (sayzd . 0.3), we
can approximate the redshift-dependent magnificationµ(z) by the magnificationµ of a fiducial source at
infinity, in which case

n(> S)
n0(> S)

= µα−1 . (166)

Thus, a local estimate of the magnification can be obtained through (166) and from a measurement of the
local change of the number density of images. If the slope of the source counts is unity,α = 1, there
will be no magnification bias, while it will cause a decrease of the local number density for flatter slopes.
Broadhurst et al. (1995) pointed out that one can immediately obtain (for sub-critical lensing, i.e. detA > 0)
an estimate for the local surface mass density from a measurement of the local magnification and the local
reduced shearg, κ = 1− [µ(1−|g|2)]−1/2. In the absence of shape information, (166) can be used in the
weak lensing limit [whereκ� 1, |γ| � 1, so thatµ≈ (1+ 2κ)] to obtain an estimate of the surface mass
density,

κ≈ n(> S)−n0(> S)
n0(> S)

1
2(α−1)

. (167)

4.4.2 Size Effect

Since lensing conserves surface brightness, the magnification can be obtained from the change in galaxy-
image sizes at fixed surface brightness. LetI be some convenient measure of the surface brightness. For
example, ifω is the solid angle of an image, defined by the determinant of the tensor of second brightness
moments as in (126), one can setI = S/ω.

Denoting byn(ω, I ,z)dω the number density of images with surface brightnessI , redshiftz, and solid
angle within dω of ω, the relation between the lensed and the unlensed number density can be written

n(ω, I ,z) =
1
µ2 n0

(
ω
µ
, I ,z

)
. (168)

through the magnification bias by a substantial factor over the probability that any individual QSO is multiply imaged (see, e.g. Turner
et al. 1984; Narayan & Wallington 1993 and references therein).
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For simplicity, we only consider the case of a moderately small lens redshift, so that the magnification can
be assumed to be locally constant for all images, irrespective of galaxy redshift. We can then drop the
variablezhere. The mean image size〈ω〉(I) at fixed surface brightnessI is then related to the mean image
size〈ω〉0(I) in the absence of lensing through

〈ω〉(I) = µ〈ω〉0(I) . (169)

If the mean image size in the absence of lensing can be measured (e.g. by deepHST exposures of blank
fields), the local valueµ of the magnification can therefore be determined by comparing the observed
image sizes to those in the blank fields. This method has been discussed in detail in Bartelmann & Narayan
(1995). For instance, if we assume that the logarithm of the image size is distributed as a Gaussian with
mean〈lnω〉0(I) and dispersionσ(I), we obtain an estimate for the local magnification from a set ofN
galaxy images,

lnµ =
N

∑
i=1

lnωi−〈lnω〉0(Ii)
σ2(Ii)

(
N

∑
i=1

1
σ2(Ii)

)−1

. (170)

A typical value for the dispersion isσ(I)≈ 0.5 (Bartelmann & Narayan 1995).

4.4.3 Relative Merits of Shear and Magnification Effect

It is interesting to compare the prospects of measuring shear and magnification caused by a deflector. We
consider a small patch of the sky containing an expected numberN of galaxy images (in the absence of
lensing), which is sufficiently small so that the lens parametersκ andγ can be assumed to be constant. We
also restrict the discussion to weak lensing case.

The dispersion of a shear estimate from averaging over galaxy ellipticities isσ2
ε/N, so that the signal-

to-noise ratio is (
S
N

)
shear

=
|γ|
σε

√
N . (171)

According to (167), the expected change in galaxy number counts is|∆N|= 2κ|α−1|N. Assuming Pois-
sonian noise, the signal-to-noise ratio in this case is(

S
N

)
counts

= 2κ|α−1|
√

N . (172)

Finally, the signal-to-noise ratio for the magnification estimate (170) is(
S
N

)
size

=
2κ

σ(I)

√
N , (173)

assuming allσ(I) are equal.
Comparing the three methods, we find

(S/N)shear

(S/N)counts
=
|γ|
κ

1
2σε|α−1|

,
(S/N)counts

(S/N)size
= 2σ(I)|α−1| . (174)

If the lens situation is such thatκ ≈ |γ| as for isothermal spheres, the first of eqs. (174) implies that the
signal-to-noise of the shear measurement is considerably larger than that of the magnification. Even for
number-count slopes as flat asα∼ 0.5, this ratio is larger than five, withσε ∼ 0.2. The second of eqs. (174)
shows that the size effect yields a somewhat larger signal-to-noise ratio than the number-density effect. We
therefore conclude from these considerations that shear measurements should yield more significant results
than magnification measurements.

This, however, is not the end of the story. Several additional considerations come into play when these
three methods of measuring lensing effects are compared. First, the shear measurement is the only one
for which we know precisely what to expect in the absence of lensing, whereas the other two methods
need to compare the measurements with calibration fields void of lensing. These comparisons require
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very accurate photometry. Second, eq. (172) overestimates the signal-to-noise ratio since we assumed
Poissonian errors, while real galaxies are known to cluster even at very faint magnitudes (e.g., Villumsen
et al. 1997), and so the error is substantially underestimated. A particularly bad example for this effect has
been found by Athreya et al. (1999) where a cluster atz∼ 0.9 seems to be behind the cluster (atz= 0.3)
they investigated with weak-lensing techniques, as identified with photometric redshifts. Third, as we shall
discuss in Sect. 4.6, observational effects such as atmospheric seeing affect the observable ellipticities and
sizes of galaxy images, whereas the observed flux of galaxies is much less affected. Hence, the shear
and size measurements require better seeing conditions than the number-count method. Both the number
counts and the size measurements (at fixed surface brightness) require accurate photometry, which is not
very important for the shear measurements. As we shall see in the course of this article, most weak-lensing
measurements have indeed been obtained from galaxy ellipticities.

A more detailed study on the relative merits of shear and magnification methods has been performed by
Schneider et al. (2000). Both methods were used to determine the parameters of mass profiles of spherically
symmetric clusters. The results of this study can be summarised as follows: The magnification in many
cases yields tighter constraints on the slope of the mass profiles, whereas the shear provides a more accurate
determination of its amplitude (or lens strength). However, for the magnification methods to yield accurate
results, the value of the unlensed number densityn0 needs to be known fairly accurately. In particular, for
measurements out to large distances from the cluster centre (e.g., more than∼ 10 Einstein radii), even an
error of a few per cent onn0 destroys its relative advantage in the estimate of the shape relative to that of
the shear. But, as we shall see in the next section, the magnification effect is very important for breaking
an invariance transformation in the lens reconstruction that is permitted by shear measurements alone.

4.5 Minimum Lens Strength for its Weak Lensing Detection

After our detailed discussion of shear estimates and signal-to-noise ratios for local lensing measurements,
it is interesting to ask how strong a deflecting mass distribution needs to be for a weak lensing measurement
to recognise it. Our simplified consideration here suffices to gain insight into the dependence on the lens
mass of the signal-to-noise ratio for a lens detection, and on the redshifts of lens and sources.

We model the deflector as a singular isothermal sphere (see Sect. 3.1.5, page 32). Let there beN galaxy
images with ellipticitiesεi in an annulus centred on the lens and bounded by angular radiiθin ≤ θi ≤ θout.
For simplicity, we restrict ourselves to weak lensing, so that E(ε) ≈ γ. For an axially-symmetric mass
distribution, the shear is always tangentially oriented relative to the direction towards the mass centre,
which is expressed by eq. (102) on page 33. We therefore consider the ellipticity component projected onto
the tangential direction. It is formally defined byεt ≡−ℜ(εe−2iϕ), whereϕ is the polar angle of the galaxy
position relative to the lens centre [see (102), page 33]. We now define an estimator for the lens strength
by

X ≡
N

∑
i=1

ai εti . (175)

The factorsai = a(θi) are arbitrary at this point, and will be chosen later such as to maximise the signal-
to-noise ratio of the estimator (175). Note that the expectation value ofX is zero in the absence of lensing,
so that a significant non-zero value ofX signifies the presence of a lens. The expectation value for an
isothermal sphere is E(X) = θE ∑i ai/(2θi), where we used (102, page 33), and

E(X2) =
N

∑
i, j=1

aia j E(εtiεt j) = [E(X)]2 +
σ2

ε
2

N

∑
i=1

a2
i . (176)

We employed E(εtiεt j) = γt(θi)γt(θ j)+δi j σ2
ε/2 here, and the factor two is due to the fact that the ellipticity

dispersion only refers to one component of the ellipticity, whileσε is defined as the dispersion of the
two-component ellipticity. Therefore, the signal-to-noise ratio for a detection of the lens is

S
N

=
θE√
2σε

∑i ai θ−1
i√

∑i a
2
i

. (177)
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Differentiating (S/N) with respect toa j , we find that (S/N) is maximised if theai are chosen∝ θ−1
i . Insert-

ing this choice into (177) yields S/N = 2−1/2θEσ−1
ε
(
∑i θ−2

i

)1/2
. We now replace the sum by its ensemble

average over the annulus,
〈
∑i θ−2

i

〉
= N

〈
θ−2
〉

= 2nπ ln(θout/θin), where we usedN = πn(θ2
out−θ2

in), with
the number density of galaxy imagesn. Substituting this result into (177), and using the definition of the
Einstein radius (101, page 33), the signal-to-noise ratio becomes

S
N

=
θE

σε

√
πn
√

ln(θout/θin) (178)

= 12.7

(
n

30arc min−2

)1/2( σε

0.2

)−1
(

σv

600kms−1

)2

×
(

ln(θout/θin)
ln10

)1/2〈Dds

Ds

〉
.

As expected, the signal-to-noise ratio is proportional the square root of the number density of galaxies
and the inverse of the intrinsic ellipticity dispersion. Furthermore, it is proportional to the square of the ve-
locity dispersionσv. Assuming the fiducial values given in eq. (178) and a typical value of(Dds/Ds)∼ 0.5,
lenses with velocity dispersion in excess of∼ 600kms−1 can be detected with a signal-to-noise& 6. This
shows that galaxy clusters will yield a significant weak lensing signal, and explains why clusters have been
the main target for weak-lensing research up to now. Individual galaxies withσv ∼ 200kms−1 cannot be
detected with weak-lensing techniques. If one is interested in the statistical properties of the mass distri-
bution of galaxies, the lensing effects ofNgal galaxies need to be statistically superposed, increasing (S/N)
by a factor of

√
Ngal. Thus, it is necessary to superpose several hundred galaxies to obtain a significant

galaxy-galaxy lensing signal. We shall return to this topic in Sect. 7 on page 105.
We finally note that (178) also demonstrates that the detection of lenses will become increasingly

difficult with increasing lens redshift, as the last factor is a sensitive function ofzd. Therefore, most lenses
so far investigated with weak-lensing techniques have redshifts below 0.5. High-redshift clusters have only
recently become the target of detailed lensing studies.

4.6 Practical Consideration for Measuring Image Shapes

4.6.1 General Discussion

Real astronomical data used for weak lensing are supplied by CCD images. The steps from a CCD image
to a set of galaxy images with measured ellipticities are highly non-trivial and cannot be explained in any
detail in the frame of this review. Nevertheless, we want to mention some of the problems together with
the solutions which were suggested and applied.

The steps from CCD frames to image ellipticities can broadly be grouped into four categories; data
reduction, image detection, shape determination, and corrections for the point-spread function. The data-
reduction process is more or less standard, involving de-biasing, flat-fielding, and removal of cosmic rays
and bad pixels. For the latter purpose, it is essential to have several frames of the same field, slightly
shifted in position. This also allows the the flat field to be determined from the images themselves (a
nice description of these steps is given in Mould et al. 1994). To account for telescope and instrumental
distortions, the individual frames have to be re-mapped before being combined into a final image. In order
to do this, the geometric distortion has to be either known or stable. In the latter case, it can be determined
by measuring the positions and shapes of stellar images (e.g., from a globular cluster). In Mould et al.
(1994), the classical optical aberrations were determined and found to be in good agreement with the
system’s specifications obtained from ray-tracing analysis.

With the individual frames stacked together in the combined image, the next step is to detect galaxies
and to measure their shapes. This may appear simple, but is in fact not quite as straightforward, for several
reasons. Galaxy images are not necessarily isolated on the image, but they can overlap, e.g. with other
galaxies. Since weak-lensing observations require a large number density of galaxy images, such merged
images are not rare. The question then arises whether a detected object is a single galaxy, or a merged pair,
and depending on the choice made, the measured ellipticities will be much different. Second, the image
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is noisy because of the finite number of photons per pixel and the noise intrinsic to the CCD electronics.
Thus, a local enhancement of counts needs to be classified as a statistically significant source detection,
and a conservative signal-to-noise threshold reduces the number of galaxy images. Third, galaxy images
have to be distinguished from stars. This is not a severe problem, in particular if the field studied is far
from the Galactic plane where the number density of stars is small.

Several data-analysis software packages exist, such as FOCAS (Jarvis & Tyson 1981) and SExtractor
(Bertin & Arnouts 1996). They provide routines, based on algorithms developed from experience and
simulated data, for objective selection of objects and measuring their centroids, their multipole moments,
their magnitudes, and classify them as stars or extended objects. Kaiser et al. (1995) developed their own
object detection algorithm. It is based on convolving the CCD image with two-dimensional Mexican hat-
shaped filter functions of variable widthθs. For each value ofθs, the maxima of the smoothed intensity
map are localised. Varyingθs, these maxima form curves in the three-dimensional space spanned by~θ and
θs. Along each such curve, the significance of a source detection is calculated, and the maximum of the
significance is defined as the location~θ of an object with corresponding sizeθs.

Once an object is found, the quadrupole moments can in principle be obtained from (125). In practice,
however, this is not necessarily the most practical definition of the moment tensor. The functionqI (I) in
(125) should be chosen such that it vanishes for surface brightnesses close to and smaller than the sky
brightness; otherwise, one would sample too much noise. On the other hand, ifqI is cut off at too bright
values ofI , the area within which the quadrupole moments are measured becomes too small, and the effects
of seeing (see below) become overwhelming. Also, with a too conservative cut-off, many galaxy images
would be missed. Assume, for instance, thatqI (I) = I H(I − Ith). One would then chooseIth such that it is
close to, but a fewσnoiseabove the sky background, and the quadrupole moments would then be measured
inside the resulting limiting isophote. Since this isophote is close to the sky background, its shape is
affected by sky noise. This implies that the measured quadrupole moments will depend highly non-linearly
on the brightness on the CCD; in particular, the effect of noise will enter the measured ellipticities in a
non-linear fashion. A more robust measurement of the quadrupole moments is obtained by replacing the
weight functionqI [I(~θ)] in (125) by IW(~θ), whereW(~θ) explicitly depends on~θ. Kaiser et al. (1995)
use a Gaussian of sizeθs as their weight functionW, i.e., the size of theirW is the scale on which the
object was detected at highest significance. It should be noted that the quadrupole moments obtained with
a weight functionW(~θ) do not obey the transformation law (128), and therefore, the expectation value of
the ellipticity, E(ε), will be different from the reduced shearg. We return to this issue further below.

Another severe difficulty for the determination of the local shear is atmospheric seeing. Due to at-
mospheric turbulence, a point-like source will be seen from the ground as an extended image; the source
is smeared-out. Mathematically, this can be described as a convolution. IfI(~θ) is the surface brightness
before passing the Earth’s atmosphere, the observed brightness distributionI (obs)(~θ) is

I (obs)(~θ) =
∫

d2ϑ I(~ϑ)P(~θ−~ϑ) , (179)

whereP(~θ) is thepoint-spread function(PSF) which describes the brightness distribution of a point source
on the CCD.P(~θ) is normalised to unity and centred on~0. The characteristic width of the PSF is called the
size of the seeing disc. The smaller it is, the less smeared the images are. A seeing well below 1arc second
is required for weak-lensing observations, and there are only a handful of telescope sites where such seeing
conditions are regularly met. The reason for this strong requirement on the data quality lies in the fact
that weak-lensing studies require a high number density of galaxy images, i.e., the observations have to be
extended to faint magnitudes. But the characteristic angular size of faint galaxies is below 1arc second. If
the seeing is larger than that, the shape information is diluted or erased.

The PSF includes not only the effects of the Earth’s atmosphere, but also pointing errors of the telescope
(e.g., caused by wind shake). Therefore, the PSF will in general be slightly anisotropic. Thus, seeing has
two important effects on the observed image ellipticities: Small elliptical images become rounder, and
the anisotropy of the PSF introduces a systematic, spurious image ellipticity. The PSF can be determined
directly from the CCD once a number of isolated stellar images are identified. The shape of the stars
(which serve as point sources) reflects the PSF. Note that the PSF is not necessarily constant across the
CCD. If the number density of stellar images is sufficiently large, one can empirically describe the PSF
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variation across the field by a low-order polynomial. An additional potential difficulty is the chromaticity
of the PSF, i.e. the dependence of the PSF on the spectral energy distribution of the radiation. The PSF as
measured from stellar images is not necessarily the same as the PSF which applies to galaxies, due to their
different spectra. The difference of the PSFs is larger for broader filters. However, it is assumed that the
PSF measured from stellar images adequately represents the PSF for galaxies.

In the idealised case, in which the quadrupole moments are defined with the weight functionqI (I) =
I , the effect of the PSF on the observed image ellipticities can easily be described. IfPi j denotes the
quadrupole tensor of the PSF, defined in complete analogy to (125), then the observed quadrupole tensor

Q(obs)
i j is related to the true one byQ(obs)

i j = Pi j + Qi j (see Valdes et al. 1983). The ellipticityχ then
transforms like

χ(obs) =
χ +Tχ(PSF)

1+T
, (180)

where

T =
P11+P22

Q11+Q22
; χ(PSF) =

P11−P22+2iP12

P11+P22
. (181)

Thus,T expresses the ratio of the PSF size to the image size before convolution, andχ(PSF) is the PSF
ellipticity. It is evident from (180) that the smallerT, the lessχ(obs) deviates fromχ. In the limit of
very largeT, χ(obs) approachesχ(PSF). In principle, the relation (180) could be inverted to obtainχ from
χ(obs). However, this inversion is unstable unlessT is sufficiently small, in the sense that noise affecting the
measurement ofχ(obs) is amplified by the inversion process. Unfortunately, these simple transformation
laws only apply for the specific choice of the weight function. For weighting schemes that can be applied
to real data, the resulting transformation becomes much more complicated.

If a galaxy image features a bright compact core which emits a significant fraction of the galaxy’s light,
this core will be smeared out by the PSF. In that case,χ(obs) may be dominated by the core and thus contain
little information about the galaxy ellipticity. This fact motivated Bonnet & Mellier (1995) to define the
quadrupole moments with a weight functionW(~θ) which not only cuts off at large angular separations, but
which is also small near~θ =~0. Hence, their weight functionq is significantly non-zero in an annulus with
radius and width both being of the order of the size of the PSF.

The difficulties mentioned above prohibit the determination of the local reduced shear by straight av-
eraging over the directly measured image ellipticities. This average is affected by the use of a angle-
dependent weight functionW in the practical definition of the quadrupole moments, by the finite size of
the PSF and its anisotropy, and by noise. Bonnet & Mellier (1995) have performed detailed simulations
of CCD frames which resemble real observations as close as possible, including an anisotropic PSF. With
these simulations, the efficiency of object detection, the accuracy of their centre positions, and the relation
between true and measured image ellipticities can be investigated in detail, and so the relation between
mean ellipticity and (reduced) shear can approximately be calibrated. Wilson et al. (1996) followed a very
similar approach, except that the analysis of their simulated CCD frames was performed with FOCAS.
Assuming an isotropic PSF, the mean image ellipticity is proportional to the reduced shear,g≈ f 〈ε〉, with
a correction factorf depending on the limiting galaxy magnitude, the photometric depth of the image, and
the size of the seeing disk. For a seeing of 0.8′′, Bonnet & Mellier obtained a correction factorf ∼ 6,
whereas the correction factor in Wilson et al. for the same seeing isf ∼ 1.5. This large difference is not
a discrepancy, but due to the different definitions of the quadrupole tensor. Although the correction factor
is much larger for the Bonnet & Mellier method, they show that their measured (and calibrated) shear es-
timate is more accurate than that obtained with FOCAS. Kaiser et al. (1995) used CCD frames taken with
WFPC2 on boardHST which are unaffected by atmospheric seeing, sheared them, and degraded the re-
sulting images by a PSF typical for ground-based images and by adding noise. In this way, they calibrated
their shear measurement and tested their removal of an anisotropic contribution of the PSF.

However, calibrations relying on simulated images are not fully satisfactory since the results will de-
pend on the assumptions underlying the simulations. Kaiser et al. (1995) and Luppino & Kaiser (1997)
presented a perturbative approach for correcting the observed image ellipticities for PSF effects, with ad-
ditional modifications made by Hoekstra et al. (1998) and Hudson et al. (1998). Since the measurement of
ellipticities lies at the heart of weak lensing studies, we shall present this approach in the next subsection,
despite its being highly technical.
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4.6.2 The KSB Method

Closely following the work by Kaiser et al. (1995), this subsection provides a relation between the observed
image ellipticity and a source ellipticity known to be isotropically distributed. The relation corrects for PSF
smearing and its anisotropy, and it also takes into account that the transformation (128) no longer applies
if the weight factor explicitly depends on~θ.

We consider the quadrupole tensor

Qi j =
∫

d2θ(θi− θ̄i)(θ j − θ̄ j) I(~θ)W
(
|~θ−~̄θ|2/σ2

)
, (182)

whereW contains a typical scaleσ, and~̄θ is defined as in (124), but with the new weight function. Note
that, in contrast to the definition (125), this tensor is no longer normalised by the flux, but this does not
affect the definition (127) of the complex ellipticity.

The relation between the observed surface brightnessIobs(~θ) and the true surface brightnessI is given
by (179). We assume in the following thatP is nearly isotropic, so that the anisotropic part ofP is small.
Then, we define the isotropic partPiso of P as the azimuthal average overP, and decomposeP into an
isotropic and an anisotropic part as

P(~ϑ) =
∫

d2ϕq(~ϕ)Piso(~ϑ−~ϕ) , (183)

which definesq uniquely. In general,q(~ϕ) will be an almost singular function, but we shall show later that
it has well-behaved moments. BothPiso andq are normalised to unity and have vanishing first moments.
With Piso, we define the brightness profiles

I iso(~θ) =
∫

d2ϕ I(~ϕ)Piso(~θ−~ϕ)

I0(~θ) =
∫

d2ϕ Is(~ϕ)Piso(~θ−~ϕ) . (184)

The first of these would be observed if the true image was smeared only with an isotropic PSF, and the
second is the unlensed source smeared withPiso. Both of these brightness profiles are unobservable, but
convenient for the following discussion. For each of them, we can define a quadrupole tensor as in (182).
From each quadrupole tensor, we define the complex ellipticityχ = χ1 + iχ2, in analogy to (127).

If we define the centres of images including a spatial weight function, the property that the centre of the
image is mapped onto the centre of the source through the lens equation is no longer strictly true. However,
the deviations are expected to be very small in general and will be neglected in the following. Hence, we

choose coordinates such that~̄θ =~0, and approximate the other centres to be at the origin as well.
According to our fundamental assumption that the intrinsic ellipticities are randomly oriented, this

property is shared by the ellipticitiesχ0 defined in terms ofI0 [see (184)], because it is unaffected by an
isotropic PSF. Therefore, we can replace (136) by E(χ0) = 0 in the determination ofg. The task is then to
relate the observed image ellipticityχobs to χ0. We break it into several steps.

From χiso to χobs. We first look into the effect of an anisotropic PSF on the observed ellipticity. Accord-
ing to (183) and (184),

Iobs(~θ) =
∫

d2ϕq(~θ−~ϕ) I iso(~ϕ) . (185)

Let f (~θ) be an arbitrary function, and consider∫
d2θ f (~θ) Iobs(~θ) =

∫
d2ϕ I iso(~ϕ)

∫
d2ϑ f (~ϕ +~ϑ)q(~ϑ)

=
∫

d2ϕ I iso(~ϕ) f (~ϕ)+
1
2

qkl

∫
d2ϕ I iso(~ϕ)

∂2 f
∂ϕk∂ϕl

+ O(q2) . (186)

We used the fact thatq is normalised and has zero mean, and defined

qi j =
∫

d2ϕq(~ϕ)ϕiϕ j , q1≡ q11−q22 , q2≡ 2q12 . (187)
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The tensorqi j is trace-less,q11 =−q22, following from (183). We consider in the following only terms up
to linear order inq. To that order, we can replaceI iso by Iobs in the final term in (186), since the difference
would yield a term∝ O(q2). Hence,∫

d2ϕ I iso(~ϕ) f (~ϕ)≈
∫

d2θ f (~θ) Iobs(~θ)− 1
2

qkl

∫
d2ϕ Iobs(~ϕ)

∂2 f
∂ϕk∂ϕl

. (188)

Settingσiso = σobs≡ σ in the definition of the quadrupole tensorsQiso andQobs, and choosingf (~θ) =
θiθ jW(|~θ|2/σ2), yields

Qiso
i j = Qobs

i j −
1
2

Zi jkl qkl , (189)

where the Einstein summation convention was adopted, and where

Zi jkl =
∫

d2ϕ Iobs(~ϕ)
∂2

∂ϕk∂ϕl

[
ϕiϕ j W

(
|~ϕ|2

σ2
iso

)]
. (190)

This then yields

tr(Qiso) = tr(Qobs)−xαqα ,

(Qiso
11−Qiso

22) = (Qobs
11 −Qobs

22 )−X1αqα , and

2Qiso
12 = 2Qobs

12 −X2αqα , (191)

where the sums run overα = 1,2.8 Up to linear order inqα,

χiso
α = χobs

α −Psm
αβ qβ , (192)

with the definitions

Psm
αβ =

1
trQobs

(
Xαβ−χobs

α xβ

)
Xαβ =

∫
d2ϕ Iobs(~ϕ)

[(
W +2|~ϕ|2 W′

σ2
iso

)
δαβ + ηα(~ϕ)ηβ(~ϕ)

W′′

σ4
iso

]
,

xα =
∫

d2ϕ Iobs(~ϕ)ηα(~ϕ)
(

2W′

σ2
iso

+ |~ϕ|2 W′′

σ4
iso

)
, (193)

whereδαβ is the Kronecker symbol, and

η1(~θ) = θ2
1−θ2

2 ; η2(~θ) = 2θ1θ2 . (194)

Psm
αβ was dubbedsmear polarisabilityin Kaiser et al. (1995). It describes the (linear) response of the

ellipticity to a PSF anisotropy. Note thatPsm
αβ depends on the observed brightness profile. In particular, its

size decreases for larger images, as expected: The ellipticities of larger images are less affected by a PSF
anisotropy than those of smaller images.

The determination of qα. Equation (192) provides a relation between the ellipticities of an observed
image and a hypothetical image smeared by an isotropic PSF. In order to apply this relation, the anisotropy
termqα needs to be known. It can be determined from the shape of stellar images.

Since stars are point-like and unaffected by lensing, their isotropically smeared images have zero ellip-
ticity, χ∗,iso = 0. Hence, from (192),

qα = (P∗,sm)−1
αβ χ∗,obs

β . (195)

In general, the PSF varies with the position of an image. If this variation is sufficiently smooth,q can be
measured for a set of stars, and approximated by a low-order polynomial across the data field. As pointed
out by Hoekstra et al. (1998), the scale sizeσ in the measurement ofq is best chosen to be the same as that
of the galaxy image under consideration. Hence, for each value ofσ, such a polynomial fit is constructed.
This approach works well and provides an estimate ofq at the position of all galaxies, which can then be
used in the transformation (192).

8We use Greek instead of Latin indicesα,β = 1,2 to denote that they are not tensor indices. In particular, the components ofχ do
not transform like a vector, but like the trace-less part of a symmetric tensor.
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From χ0 to χiso. We now relateχiso to the ellipticityχ0 of a hypothetical image obtained from isotropic
smearing of the source. To do so, we use (184) and (94) in the formI(~θ) = Is(A~θ), and consider

I iso(~θ) =
∫

d2ϕ Is(A~ϕ)Piso(~θ−~ϕ) (196)

=
1

detA

∫
d2ζ Is(~ζ)Piso(~θ−A−1~ζ)≡ Î(A~θ) .

The second step is merely a transformation of the integration variable, and in the final step we defined the
brightness moment

Î(~θ) =
∫

d2ϕ Is(~ϕ) P̂(~θ−~ϕ) with P̂(~θ)≡ 1
detA

Piso(A−1~θ) . (197)

The functionP̂ is normalised and has zero mean. It can be interpreted as a PSF relatingÎ to Is. The presence
of shear renderŝP anisotropic.

We next seek to find a relation between the ellipticities ofI iso andÎ :

Q̂i j =
∫

d2ββiβ j Î(~β)W

(
|~β|2

σ̂2

)
(198)

= detA AikA jl

∫
d2θθkθl I iso(~θ)W

(
|~θ|2−δα ηα(~θ)

σ2

)
.

The relation between the two filter scales is given byσ̂2 = (1− κ)2(1+ |g|2)σ2, andδ is the distortion
(138). For smallδ, we can employ a first-order Taylor expansion of the weight functionW in the previous
equation. This results in the following relation betweenχ̂ andχiso:

χiso
α − χ̂α = Cαβgβ , (199)

where

Cαβ = 2δαβ−2χiso
α χiso

β +
2

tr(Qiso)
χiso

α Lβ−
2

tr(Qiso)
Bαβ ,

Bαβ = −
∫

d2θ I iso(~θ)W′
(
|~θ|2

σ2

)
1

σ2 ηα(~θ)ηβ(~θ)

Lα = −
∫

d2θ |~θ|2 I iso(~θ)W′
(
|~θ|2

σ2

)
1

σ2 ηα(~θ) . (200)

C is theshear polarisabilityof Kaiser et al. (1995). WhereasC is defined in terms ofI iso, owing to the
assumed smallness ofq, the difference ofC calculated withI iso andIobswould cause a second-order change
in (199) and is neglected, so that we can calculateC directly from the observed brightness profile.

In analogy to (183), we can decomposeP̂ into an isotropic and an anisotropic part, the latter one being
small due to the assumed smallness of the shear,

P̂(~θ) =
∫

d2ϕ P̂iso(~ϕ) q̂(~θ−~ϕ) . (201)

Defining the brightness profile which would be obtained from smearing the source with the isotropic PSF
P̂iso, Î0(~θ) =

∫
d2ϕ Is(~ϕ) P̂iso(~θ−~ϕ), one finds

Î(~θ) =
∫

d2ϕ Î0(~ϕ) q̂(~θ−~ϕ) . (202)

Thus, the relation between̂I andÎ0 is the same as that betweenIobs andI iso, and we can write

χ̂0
α = χ̂α−Psm

αβ q̂β . (203)
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Note thatPsm should in principle be calculated by usingÎ instead ofIobs in (192). However, due to the
assumed smallness ofg andq, the differences betweenIobs, I iso, andÎ are small, namely of first order ing
andq. Sinceq̂ is of orderg [as is obvious from its definition, and will be shown explicitly in (205)], this
difference in the calculation ofPsm would be of second order in (203) and is neglected here.

Eliminatingχ̂ from (199) and (203), we obtain

χiso
α = χ̂0

α +Cαβgβ +Psm
αβ q̂β . (204)

Now, for stellar objects, botĥχ0 andχiso vanish, which implies a relation between ˆq andg,

q̂α =−(Psm∗)−1
αβ C∗βγgγ , (205)

where the asterisk indicates thatPsm andC are to be calculated from stellar images. Whereas the result
should in principle not depend on the choice of the scale length in the weight function, it does so in practice.
As argued in Hoekstra et al. (1998), one should use the same scale length inPsm∗ andC∗ as for the galaxy
object for which the ellipticities are measured. Defining now

Pg
αβ = Cαβ−Psm

αγ (Psm∗)−1
γδ C∗δβ , (206)

and combining (192) and (204), we finally obtain

χ̂0 = χobs−Psm
αβ qβ−Pg

αβgβ . (207)

This equation relates the observed ellipticity to that of the source smeared by an isotropic PSF, using
the PSF anisotropy and the reduced shearg. Since the expectation value ofχ̂0 is zero, (207) yields an
estimate ofg. The two tensorsPsm andPg can be calculated from the brightness profile of the images.
Whereas the treatment has been confined to first order in the PSF anisotropy and the shear, the simulations
in Kaiser et al. (1995) and Hoekstra et al. (1998) show that the resulting equations can be applied even for
moderately large shear. A numerical implementation of these relations, theimcat software, is provided by
N. Kaiser (see http://www.ifa.hawaii.edu/∼kaiser ). We also note that modifications of this scheme were
recently suggested (Rhodes et al. 2000, Kaiser 2000), as well as a completely different approach to shear
measurements (Kuijken 1999). Kaiser et al. (1999) provide a detailed description of the image analysis of
weak-lensing data from a large CCD-array camera.
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5 Weak Lensing by Galaxy Clusters

5.1 Introduction

So far, weak gravitational lensing has chiefly been applied to determine the mass distribution of medium-
redshift galaxy clusters. The main reason for this can be seen from eq. (178): Clusters are massive enough
to be individually detected by weak lensing. More traditional methods to infer the matter distribution
in clusters are (a) dynamical methods, in which the observed line-of-sight velocity distribution of cluster
galaxies is used in conjunction with the virial theorem, and (b) the investigation of the diffuse X–ray
emission from the hot (∼ 107K) intra-cluster gas residing in the cluster potential well (see, e.g., Sarazin
1986).

Both of these methods are based on rather strong assumptions. For the dynamical method to be reliable,
the cluster must be in or near virial equilibrium, which is not guaranteed because the typical dynamical
time scale of a cluster is not much shorter than the Hubble timeH−1

0 , and the substructure abundantly
observed in clusters indicates that an appreciable fraction of them is still in the process of formation.
Projection effects and the anisotropy of galaxy orbits in clusters further affect the mass determination by
dynamical methods. On the other hand, X–ray analyses rely on the assumption that the intra-cluster gas is
in hydrostatic equilibrium. Owing to the finite spatial and energy resolution of existing X–ray instruments,
one often has to conjecture the temperature profile of the gas. Here, too, the influence of projection effects
is difficult to assess.

Whereas these traditional methods have provided invaluable information on the physics of galaxy clus-
ters, and will continue to do so, gravitational lensing offers a welcome alternative approach, for it deter-
mines the projected mass distribution of a cluster independent of the physical state and nature of the matter.
In particular, it can be used to calibrate the other two methods, especially for clusters showing evidence of
recent merger events, for which the equilibrium assumptions are likely to fail. Finally, as we shall show
below, the determination of cluster mass profiles by lensing is theoretically simple, and recent results show
that the observational challenges can also be met with modern telescopes and instruments.

Both shear and magnification effects have been observed in a number of galaxy clusters. In this chapter,
we discuss the methods by which the projected mass distribution in clusters can be determined from the
observed lensing effects, and show some results of mass reconstructions, together with a brief discussion
of their astrophysical relevance. In principle, voids could also be measured using the same methods, but
as shown in Amendola et al. (1999), their (negative) density contrast is too small for a detection under
realistic assumptions. Sect. 5.2 presents the principles of cluster mass reconstruction from estimates of
the (reduced) shear obtained from image ellipticities (also recently reviewed by Umetsu et al. 1999). In
contrast to the two-dimensional mass maps generated by these reconstructions, the aperture mass methods
discussed in Sect. 5.3 determine a single number to characterise the bulk properties of the cluster mass.
Observational results are presented in Sect. 5.4. We outline further developments in the final section,
including the combined analysis of shear and magnification effects, maximum-likelihood methods for the
mass reconstruction, and a method for measuring local lens parameters from the extragalactic background
noise.

5.2 Cluster Mass Reconstruction from Image Distortions

We discussed in detail in Sect. 4 how the distortion of image shapes can be used to determine the local tidal
gravitational field of a cluster. In this section, we describe how this information can be used to construct
two-dimensional mass maps of clusters.

Shortly after the discovery of giant luminous arcs (Soucail et al. 1987a; Lynds & Petrosian 1989), Fort
et al. (1988) detected a number of distorted galaxy images in the cluster A 370. They also interpreted
thesearcletsas distorted background galaxy images, but on a weaker level than the giant luminous arc in
the same cluster. The redshift determination of one arclet by Mellier et al. (1991) provided early support
for this interpretation. Tyson et al. (1990) discovered a coherent distortion of faint galaxy images in the
clusters A 1689 and Cl 1409+52, and constrained their (dark) mass profiles from the observed ‘shear’.
Kochanek (1990) and Miralda-Escude (1991) studied in detail how parameterised mass models for clusters
can be constrained from such distortion measurements.
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The field began to flourish after Kaiser & Squires (1993) found that the distortions can be used for
parameter-free reconstructions of cluster surface mass densities. Their method, and several variants of it,
will be described in this section. It has so far been applied to about 15 clusters, and this number is currently
limited by the number of available dark nights with good observing conditions at the large telescopes which
are required for observations of weak lensing.

5.2.1 Linear Inversion of Shear Maps

Equation (99, page 32) shows that the shearγ is a convolution of the surface mass densityκ with the
kernelD. This relation is easily inverted in Fourier space to return the surface mass density in terms of a
linear functional of the shear. Hence, if the shear can be observed from image distortions, the surface mass
density can directly be obtained. Let the Fourier transform ofκ(~θ) be

κ̂(~l) =
∫
R2

d2θκ(~θ) exp(i~θ ·~l) . (208)

The Fourier transform of the complex kernelD defined in (99, page 32) is

D̂(~l) = π
(
l2
1− l2

2 +2il1l2
)

|~l |2
. (209)

Using the convolution theorem, eq. (99, page 32) can be writtenγ̂(~l) = π−1D̂(~l) κ̂(~l) for~l 6=~0. Multiplying
both sides of this equation with̃D∗ and usingD̃ D̃∗ = π2 gives

κ̂(~l) = π−1γ̂(~l)D̂∗(~l) for ~l 6=~0 , (210)

and the convolution theorem leads to the final result

κ(~θ)−κ0 =
1
π

∫
R2

d2θ′D∗(~θ−~θ′)γ(~θ′)

=
1
π

∫
R2

d2θ′ℜ
[
D∗(~θ−~θ′)γ(~θ′)

]
(211)

(Kaiser & Squires 1993). The constantκ0 in (211) appears because a constant surface mass density does
not cause any shear and is thus unconstrained byγ. The two expressions in (211) are equivalent because
ℑ(D̂∗ γ̂)≡ 0, as can be shown from the Fourier transforms of equations (96, page 31). In applications, the
second form of (211) should be used to ensure thatκ is real. Relation (211) can either be applied to a case
where all the sources are at the same redshift, in which caseκ andγ are defined as in eqs. (91) and (96), or
where the sources are distributed in redshift, becauseκ andγ are interpreted as convergence and shear for
a hypothetical source at infinite redshift, as discussed in Sect. 4.3.2.

In the case of a weak lens (κ� 1, |γ| � 1), the shear map is directly obtained from observations,
cf. (224). When inserted into (211), this map provides a parameter-free reconstruction of the surface mass
density, apart from an overall additive constant. The importance of this result is obvious, as it provides us
with a novel and simple method to infer the mass distribution in galaxy clusters.

There are two basic ways to apply (211) to observational data. Either, one can derive a shear map from
averaging over galaxy images by calculating the local shear on a grid in~θ-space, as described in Sect. 4.3;
or, one can replace the integral in (211) by a sum over galaxy images at positions~θi ,

κ(~θ) =
1
nπ ∑

i
ℜ
[
D∗(~θ−~θi)εi

]
. (212)

Unfortunately, this estimate ofκ has infinite noise (Kaiser & Squires 1993) because of the noisy sam-
pling of the shear at the discrete background galaxy positions. Smoothing is therefore necessary to obtain
estimators ofκ with finite noise. The form of eq. (212) is preserved by smoothing, but the kernelD is
modified to another kernel̃D. In particular, Gaussian smoothing with smoothing lengthθs leads to

D̃(~θ) =

[
1−

(
1+
|~θ|2

θ2
s

)
exp

(
−|
~θ|2

θ2
s

)]
D(~θ) (213)
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(Seitz & Schneider 1995a). Therms error of the resultingκ map is of orderσε N−1/2, whereN is the
number of galaxy images per smoothing window,N∼ nπθ2

s. However, the errors will be strongly spatially
correlated.

van Waerbeke (2000) showed that the covariance of a mass map obtained with the kernel (213) is

Cov(κ(~θ),κ(~θ′) =
σ2

ε
4πθ2

sn
exp

(
−|
~θ−~θ′|2

2θ2
s

)
. (214)

Thus, the correlation extends to scales of order the smoothing scaleθs (see also Lombardi & Bertin 1998a).
Indeed, this result is surprising, as by reducing the smoothing scale, the correlation length of the noise can
accordingly be reduced to small scales – although the surface mass density at each point depends on the
galaxy ellipticities at all distances. It should be noted that the covariance in (214) is derived under the
assumption of no lensing,γ ≡ 0. In the presence of a shear – the interesting situation of course – an
additional effect contributes to the noise, namely that the galaxy images are not uniformly, but randomly
distributed. This effect contributes shot-noise to the covariance, quadratically inγ (Schneider & Morales-
Merino 2000). Therefore, whereas the estimate (212) withD replaced byD̃ uses the observational data
more directly than by first constructing a smoothed shear map and applying (211) to it, it turns out that
the latter method yields a mass map which is less noisy than the estimate obtained from (212), because
(212) contains the ‘shot noise’ from the random angular position of the galaxy images (Seitz & Schneider
1995a).

A lower bound to the smoothing lengthθs follows from the spatial number density of background
galaxies, i.e. their mean separation. More realistically, a smoothing window needs to encompass several
galaxies. In regions of strong shear signals,N ∼ 10 may suffice, whereas mass maps in the outskirts of
clusters where the shear is small may be dominated by noise unlessN ∼ 100. These remarks illustrate
that a single smoothing scale across a whole cluster may be a poor choice. We shall return to this issue in
Sect. 5.5.1, where improvements will be discussed.

Before applying the mass reconstruction formula (211) to real data, one should be aware of the follow-
ing difficulties:

1. The integral in (211) extends overR2, while real data fields are relatively small (most of the applica-
tions shown in Sect. 5.4 are based on CCDs with side lengths of about 7 arc min). Since there is no
information on the shear outside the data field, the integration has to be restricted to the field, which
is equivalent to settingγ = 0 outside. This is done explicitly in (212). This cut-off in the integration
leads to boundary artefacts in the mass reconstruction. Depending on the strength of the lens, its
angular size relative to that of the data field, and its location within the data field, these boundary
artefacts can be more or less severe. They are less important if the cluster is weak, small compared
to the data field, and centred on it.

2. The shear is an approximate observable only in the limit of weak lensing. The surface mass density
obtained by (211) is biased low in the central region of the cluster where the weak lensing assumption
may not hold (and does not hold in those clusters which show giant arcs). Thus, if the inversion
method is to be applied also to the inner parts of a cluster, the relation betweenγ and the observable
δ has to be taken into account.

3. The surface mass density is determined by (211) only up to an additive constant. We demonstrate
in the next subsection that there exists a slightly different general invariance transformation which is
present in all mass reconstructions based solely on image shapes. However, this invariance transfor-
mation can be broken by including the magnification effect.

In the next three subsections, we shall consider points (1) and (2). In particular, we show that the first
two problems can easily be cured. The magnification effects will be treated in Sect. 5.4.

5.2.2 Non–Linear Generalisation of the Inversion, and an Invariance Transformation

In this section, we generalise the inversion equation (211) to also account for strong lensing, i.e. we shall
drop the assumptionκ� 1 and|γ| � 1. In this case, the shearγ is no longer a direct observable, but at best
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the reduced shearg, or in general the distortionδ. In this case, the relation betweenκ and the observable
becomes non-linear. Furthermore, we shall assume here that all sources are at the same redshift, so that the
reduced shear is well-defined.

Consider first the case that the cluster is sub-critical everywhere, i.e. detA > 0 for all~θ, which implies
|g(~θ)|< 1. Then, the mean image ellipticityε is an unbiased estimate of the local reduced shear, so that

γ(~θ) =
[
1−κ(~θ)

]
〈ε〉(~θ) , (215)

where the field〈ε〉(~θ) is determined by the local averaging procedure described in Sect. 4.3.1. Inserting
this into (211) leads to an integral equation forκ(~θ),

κ(~θ)−κ0 =
1
π

∫
R2

d2θ′
[
1−κ(~θ′)

]
ℜ
[
D∗(~θ−~θ′)〈ε〉(~θ′)

]
, (216)

(Seitz & Schneider 1995a), which is readily solved by iteration. Starting fromκ ≡ 0, a first estimate of
κ(~θ) is obtained from (216), which after insertion into the right-hand side of (215) yields an update ofγ(~θ),
etc. This iteration process converges quickly to the unique solution.

The situation becomes only slightly more complicated if critical clusters are included. We only need
to keep track of detA while iterating, becauseγ must be derived from 1/〈ε〉∗ rather than from〈ε〉 where
detA < 0. Hence, the local invariance betweeng and 1/g∗ is broken due to non-local effects: A local jump
from g to 1/g∗ cannot be generated by any smooth surface mass density.

After a minor modification9, this iteration process converges quickly. See Seitz & Schneider (1995a)
for more details on this method and for numerical tests done with a cluster mass distribution produced by a
cosmologicalN-body simulation. It should have become clear that the non-linear inversion process poses
hardly any additional problem to the mass reconstruction compared to the linear inversion (211).

This non-linear inversion still contains the constantκ0, and so the result will depend on this uncon-
strained constant. However, in contrast to the linear (weak lensing) case, this constant does not correspond
to adding a sheet of constant surface mass density. In fact, as can be seen from (216), the transformation

κ(~θ)→ κ′(~θ) = λκ(~θ)+(1−λ) or[
1−κ′(~θ)

]
= λ

[
1−κ(~θ)

]
(217)

leads to another solution of the inverse problem for any value ofλ 6= 0. Another and more general way to
see this is that the transformationκ→ κ′ changesγ to γ′(~θ) = λγ(~θ), cf. (99, page 32). Hence, the reduced
shearg = γ(1− κ)−1 is invariant under the transformation (217), so that the relation between intrinsic
and observed ellipticity is unchanged under theinvariance transformation(217). This is the mass-sheet
degeneracy pointed out by Falco et al. (1985) in a different context. We thus conclude that the degeneracy
due to the invariance transformation (217) cannot be lifted if only image shapes are used. However, the
magnification transforms like

µ′(~θ) = λ−2µ(~θ) , (218)

so that the degeneracy can be lifted if magnification effects are taken into account (see Sect. 4.4).
The invariance transformation leaves the critical curves of the lens mapping invariant. Therefore, even

the location of giant luminous arcs which roughly trace the critical curves does not determine the scaling
constantλ. In addition, the curveκ = 1 is invariant under (217). However, there are at least two ways to
constrainλ. First, it is reasonable to expect that on the whole the surface mass density in clusters decreases
with increasing separation from the cluster ‘centre’, so thatλ > 0. Second, since the surface mass density
κ is non-negative, upper limits onλ are obtained by enforcing this condition.

9At points whereκ = 1, 1/g∗ = 0 andE(ε) = 0, whileγ remains finite. During the iteration, there will be points~θ where the field
κ is very close to unity, but where〈ε〉 is not necessarily small. This leads to large values ofγ, which render the iteration unstable.

However, this instability can easily be removed if a damping factor like
(

1+ |γ2(~θ′)|
)

exp
(
−|γ2(~θ′)|

)
is included in (211). This

modification leads to fast convergence and affects the result of the iteration only very slightly.

60



5.2.3 Finite–Field Inversion Techniques

We shall now turn to the problem that the inversion (211) in principle requires data on the whole sky,
whereas the available data field is finite. A simple solution of this problem has been attempted by Seitz
& Schneider (1995a). They extrapolated the measured shear field on the finite regionU outside the data
field, using a parameterised form for the radial decrease of the shear. From a sample of numerically
generated cluster mass profiles, Bartelmann (1995a) showed that this extrapolation yields fairly accurate
mass distributions. However, in these studies the cluster was always assumed to be isolated and placed
close to the centre of the data field. If these two conditions are not met, the extrapolation can produce
results which are significantly off. In order to remove the boundary artefacts inherent in applying (211) to
a finite field, one should therefore aim at constructing an unbiased finite-field inversion method.

The basis of most finite-field inversions is a result first derived by Kaiser (1995). Equation (96, page 31)
shows that shear and surface mass density are both given as second partial derivatives of the deflection
potentialψ. After partially differentiating (96, page 31) and combining suitable terms we find

∇κ =
(

γ1,1 + γ2,2

γ2,1− γ1,2

)
≡~uγ(~θ) . (219)

The gradient of the surface mass density can thus be expressed by the first derivatives of the shear, hence
κ(~θ) can be determined, up to an additive constant, by integrating (219) along appropriately selected curves.
This can be done in the weak lensing case where the observed smoothed ellipticity field〈ε〉(~θ) can be
identified withγ, and~uγ(~θ) can be constructed by finite differencing. If we insertγ = (1−κ)g into (219),
we find after some manipulations

∇K(~θ) =
−1

1−g2
1−g2

2

(
1−g1 −g2

−g2 1+g1

) (
g1,1 +g2,2

g2,1−g1,2

)
≡ ~ug(~θ) , (220)

where
K(~θ)≡ ln[1−κ(~θ)] . (221)

Hence, using the smoothed ellipticity field〈ε〉(~θ) as an unbiased estimator forg(~θ), and assuming a sub-
critical cluster, one can obtain the vector field~ug(~θ) by finite differencing, and thus determineK(~θ) up to
an additive constant from line integration, or, equivalently, 1−κ(~θ) up to an overall multiplicative constant.
This is again the invariance transformation (217).

In principle, it is now straightforward to obtainκ(~θ) from the vector field~uγ(~θ), or K(~θ) from~ug(~θ),
simply by a line integration of the type

κ(~θ,~θ0) = κ(~θ0)+
∫ ~θ

~θ0

d~l ·~uγ(~l) , (222)

where~l is a smooth curve connecting~θ with~θ0. If ~uγ is a gradient field, as it ideally is, the resulting surface
mass density is independent of the choice of the curves~l . However, since~uγ is obtained from noisy data (at
least the noise resulting from the intrinsic ellipticity distribution), it will in general not be a gradient field,
so that (219) has no solution. Therefore, the various line integration schemes proposed (Schneider 1995,
Kaiser et al. 1994, Bartelmann 1995a) yield different results.

Realising that eq. (219) has no exact solution for an observed field~uγ, we wish to find a mass distribution
κ(~θ) which satisfies (219) ‘best’. In general,~uγ can be split into a gradient field and a curl component, but
this decomposition is not unique. However, as pointed out in Seitz & Schneider (1996), since the curl
component is due to noise, its mean over the data field is expected to vanish. Imposing this condition,
which determines the decomposition uniquely, they showed that

κ(~θ)− κ̄ =
∫

U
d2θ′ ~H(~θ′,~θ) ·~uγ(~θ′) , (223)
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whereκ̄ is the average ofκ(~θ) over the data fieldU, and the kernel~H is the gradient of a scalar function
which is determined through a von Neumann boundary value problem, with singular source term. This
problem can be solved analytically for circular and rectangular data fields, as detailed in the Appendix of
Seitz & Schneider (1996). If the data field has a more complicated geometry, an analytic solution is no
longer possible, and the boundary value problem with a singular source term cannot be solved numerically.

An alternative method starts with taking the divergence of (219) and leads to the new boundary value
problem,

∇2κ = ∇ ·~uγ with ~n·∇κ =~n·~uγ on ∂U , (224)

where~n is the outward-directed normal on the boundary ofU. As shown in Seitz & Schneider (1998),
eqs. (223) and (224) are equivalent. An alternative and very elegant way to derive (224) has been found by
Lombardi & Bertin (1998a). They noticed that the ‘best’ approximation to a solution of (219) minimises
the ‘action’ ∫

U
d2θ |∇κ(~θ)−~uγ(~θ)|2 . (225)

Euler’s equations of the variational principle immediately reproduce (224). This von Neumann boundary
problem is readily solved numerically, using standard numerical techniques (see Sect. 19.5 of Press et al.
1986). Lombardi & Bertin (1999a) proposed a direct method for solving the variational principle (225)
which, for rectangular fields, is equivalent to Fourier methods for the solution of the Neumann problem
(224).

A comparison between these different finite-field inversion equations was performed in Seitz & Schnei-
der (1996) and in Squires & Kaiser (1996) by numerical simulations. Of all the inversions tested, the inver-
sion (224) performs best on all scales (Seitz & Schneider 1996; Fig. 6 of Squires & Kaiser 1996). Indeed,
Lombardi & Bertin (1998a) showed analytically that the solution of eq. (224) provides the best unbiased
estimate of the surface mass density. The relations (222) through (225) can be generalised to the non-weak
case by replacingκ with K and~uγ with~ug.

5.2.4 Accounting for a redshift distribution of the sources

We now describe how the preceding mass reconstructions must be modified if the sources have a broad
redshift distribution. In fact, only minor modifications are needed. The relation〈ε〉 = g for a single
source redshift is replaced by eq. (151), which gives an estimate for the shear in terms of the mean image
ellipticities and the surface mass density. This relation can be applied iteratively:

Begin with κ(0) = 0; then, eq. (151) yields a first guess for the shearγ(1)(~θ) by settingγ = 0 on the
right-hand side. From (223), or equivalently by solving (224), the corresponding surface mass density
κ(1)(~θ) is obtained. Insertingκ(1) andγ(1) on the right-hand side of eq. (151), a new estimateγ(2)(~θ) for
the shear is obtained, and so forth.

This iteration process quickly converges. Indeed, the difficulty mentioned in footnote 9 (page 60) no
longer occurs since the critical curves and the curve(s)κ = 1 are effectively smeared out by the redshift
distribution, and so the iteration converges even faster than in the case of a single source redshift.

Sinceκ(n) is determined only up to an additive constant for anyγ(n), the solution of the iteration depends
on the choice of this constant. Hence, one can obtain a one-parameter family of mass reconstructions, like
in (217). However, the resulting mass-sheet degeneracy can no longer be expressed analytically due to the
complex dependence of (151) onκ andγ. In the case of weak lensing, it corresponds to adding a constant,
as before. An approximate invariance transformation can also be obtained explicitly for mildly non-linear
clusters withκ . 0.7 and detA > 0 everywhere. In that case, eq. (152) holds approximately, and can be
used to show (Seitz & Schneider 1997) that the invariance transformation takes the form

κ(~θ)→ κ′(~θ) = λκ(~θ)+
(1−λ)〈Z〉
〈Z2〉

. (226)

In case of a single redshiftzs, such thatZ(zs) = 〈Z〉, this transformation reduces to (217) for〈Z〉κ.
We point out that the invariance transformation (226) in the case of a redshift distribution of sources is

of different nature than that for a single source redshift. In the latter case, the reduced shearg(~θ) is invariant
under the transformation (217). Therefore, the probability distribution of the observed galaxy ellipticities
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is invariant, since it involves only the intrinsic ellipticity distribution andg. For a redshift distribution, the
invariance transformation keeps the mean image ellipticities invariant, but the probability distributions are
changed. Several strategies were explored in Seitz & Schneider (1997) to utilise this fact for breaking the
invariance transformation. (See also Lombardi & Bertin 1999b and Gautret et al. 2000.) While possible in
principle, the corresponding effect on the observed ellipticity distribution is too small for this approach to
be feasible with existing data.

5.2.5 Breaking the Mass-Sheet Degeneracy

Equation (218) shows that the invariance transformation (217) affects the magnification. Hence, the de-
generacy can be lifted with magnification information. As discussed in Sect. 4.4, two methods to obtain
magnification information have been proposed. Detections of the number-density effect have so far been
reported for two clusters (Cl 0024+16, Fort et al. 1997; Abell 1689, Taylor et al. 1998). Whereas the in-
formation provided by the number density effect is less efficient than shear measurements (see Sect. 4.4.3),
these two clusters appear to be massive enough to allow a significant detection. In fact, Taylor et al. (1998)
obtained a two-dimensional mass reconstruction of the cluster A 1689 from magnification data.

In the case of weak lensing, and thus small magnifications, the magnification can locally be translated
into a surface mass density – see (167). In general, the relation betweenµ andκ is non-local, sinceµ also
depends on the shear. Various attempts to account for this non-locality have been published (van Kampen
1998, Dye & Taylor 1998). However, it must be noted that the surface mass density cannot be obtained
from magnification alone since the magnification also depends on the shear caused by matter outside the
data field. In practice, if the data field is sufficiently large and no mass concentration lies close to but
outside the data field, the mass reconstruction obtained from magnification can be quite accurate.

In order to break the mass-sheet degeneracy, it suffices in principle to measure one value of the magni-
fication: Either the magnification at one location in the cluster, or the average magnification over a region.
We shall see later in Sect. 5.5.1 how local magnification information can be combined with shear measure-
ments. Doing it the naive way, expressingκ in terms ofµ andγ, is a big waste of information: Since there
is only one independent scalar field (namely the deflection potentialψ) describing the lens, one can make
much better use of the measurements ofγ andµ than just combining them locally; the relation between
them should be used to reduce the error onκ.

5.2.6 Accuracy of cluster mass determinations

The mass-sheet degeneracy fundamentally limits the accuracy with which cluster masses can be determined
from shear measurements if no additional assumptions are introduced. Furthermore, cosmologists are
traditionally interested in the masses of clusters inside spherical volumes (e.g., inside the virial radius),
whereas lensing measures the mass in cylinders, i.e., the projected mass. On the other hand, cosmological
simulations show that cluster mass profiles are quite similar in shape (e.g., Navarro et al. 1996b). Assuming
such a universal density profile, both of these effects can approximately be accounted for.

The relation between projected mass within the virial radius and that inside a sphere with virial radius
has been investigated by Reblinsky & Bartelmann (1999a) and Metzler et al. (1999), using numerical
cluster simulations. The ratio of these two masses is by definition≥ 1, but as these authors show, this ratio
can be larger than unity by several tens of a per cent, due to projection of additional mass in front of or
behind the cluster proper. As clusters are preferentially located inside filaments, the largest deviations occur
when the filament is oriented along the line-of-sight to the cluster. The amplitude of this effect decreases
with higher cluster masses. The projection bias is of interest only when comparing lensing masses with
cosmological predictions of spherical masses. However, at least when cosmological predictions are derived
from numerical simulations, one can equally well extract the projected masses; the projection bias therefore
does not affect the use of cluster mass estimates from lensing for cosmology.

Using cluster mass models obtained fromN-body simulations, Brainerd et al. (1999) showed that,
when the observed shear signal is related to the mass using the isothermal relation (cf. Sect. 3.1.5)M3(<
r) = 4r2γ(r)σcr for the mass inside spheres of radiusr, or M2(< r) = 2πr2γ(r)Σcr for the projected mass
insider = Ddθ, fairly accurate masses of clusters can be derived from weak lensing. In particular, the virial
masses of clusters can be determined with high accuracy, provided the shear measurements extend to such
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large distances. Whereas most of the previous weak-lensing cluster studies, as described in Sect. 5.4, do
not cover such large an area, the upcoming wide-field imaging cameras will allow one to do this in the near
future. Nevertheless, the projection bias needs to be kept in mind when masses of clusters are quoted from
weak-lensing analyses using relatively small angular fields.

5.3 Aperture Mass and Multipole Measures

Having reconstructed the mass distribution, we can estimate the local dispersion ofκ (e.g., Lombardi &
Bertin 1998a, van Waerbeke 2000); cf. eq. (214). However, the errors at different points are strongly cor-
related, and so it makes little sense to attach an error bar to each point of the mass map. Although mass
maps contain valuable information, it is sometimes preferable to reduce them to a small set of numbers
such as the mass-to-light ratio, or the correlation coefficient between the mass map and the light distribu-
tion. One of the quantities of interest is the total mass inside a given region. As became clear in the last
section, this quantity by itself cannot be determined from observed image ellipticities due to the invariance
transformation. But a quantity related to it,

ζ(~θ;ϑ1,ϑ2)≡ κ̄(~θ;ϑ1)− κ̄(~θ;ϑ1,ϑ2) , (227)

the difference between the mean surface mass densities in a circle of radiusϑ1 around~θ and in an annulus
of inner and outer radiiϑ1 andϑ2, respectively, can be determined in the weak-lensing case, since then
the invariance transformation corresponds to an additive constant inκ which drops out of (227). We show
in this section that quantities like (227) can directly be obtained from the image ellipticities without the
need for a two-dimensional mass map. In Sect. 5.3.1, we derive a generalised version of (227), whereas
we consider the determination of mass multipoles in Sect. 5.3.2. The prime advantage of all these aperture
measures is that the error analysis is relatively straightforward.

5.3.1 Aperture Mass Measures

Generally, aperture mass measures are weighted integrals of the local surface mass density,

Map(~θ0) =
∫

d2θκ(~θ)U(~θ−~θ0) , (228)

with weight functionU(~θ). Assume now that the weight function is constant on self-similar concentric
curves. For example, theζ-statistics (227), introduced by Kaiser (1995), is of the form (228), with a
weight function that is constant on circles,U(ϑ) = (πϑ2

1)−1 for 0≤ ϑ ≤ ϑ1, U(ϑ) = [π(ϑ2
2−ϑ2

1]−1 for
ϑ1 < ϑ≤ ϑ2, and zero otherwise.

Let the shape of the aperture be described by a closed curve~c(λ), λ∈ I , whereI is a finite interval, such
that~c×~̇c≡ c1ċ2−c2ċ1 > 0 for all λ ∈ I . We can then uniquely define a new coordinate system(b,λ) by
choosing a centre~θ0 and defining~θ =~θ0 + b~c(λ). The weight function should be constant on the curves
~c(λ) so that it depends only onb. In the new coordinate system, (228) reads

Map(~θ0) =
∫ ∞

0
db bU(b)

∮
I
dλ~c×~̇cκ[~θ0 +b~c(λ)] , (229)

where the factorb~c×~̇c is the Jacobian determinant of the coordinate transformation. Equation (229)
can now be transformed in three steps; first, by a partial integration with respect tob; second, by replacing
partial derivatives ofκ with partial derivatives ofγ using eq. (219); and third by removing partial derivatives
of γ in another partial integration. In carrying out these steps, we assume that the weight function is
compensated, ∫

dbbU(b) = 0 . (230)

Introducing

Q(b)≡ 2
b2

∫ b

0
db′b′U(b′)−U(b) (231)
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and writing the curve~c in complex notation,C(λ) = c1(λ) + i c2(λ), leads to the final result (Schneider &
Bartelmann 1997)

Map(~θ0) =
∫

d2θQ[b(~θ)]
ℑ[γ(~θ)C∗Ċ∗]

ℑ[C∗Ċ]
, (232)

where the argumentλ of C is to be evaluated at position~θ =~θ0 +b~c(λ).10 The numerator in the final term
of (232) projects out a particular component of the shear, whereas the denominator is part of the Jacobian
of the coordinate transformation. The constraint (230) assures that an additive constant inκ does not affect
Map. The expression (232) has several nice properties which render it useful:

1. If the functionU(b) is chosen such that it vanishes forb> b2, then from (230) and (231),Q(b) = 0
for b> b2. Thus, the aperture mass can be derived from the shear in a finite region.

2. If U(b) = const for 0≤ b≤ b1, thenQ(b) = 0 in that interval. This means that the aperture mass
can be determined solely from the shear in an annulusb1 < b< b2. This has two advantages which
are relevant in practice. First, if the aperture is centred on a cluster, the bright central cluster galaxies
may prevent the detection of a large number of faint background galaxies there, so that the shear in
the central part of the cluster may be difficult to measure. In that case it is still possible to determine
the total mass inside the cluster core using (232) with an appropriately chosen weight functionU .
Second, although in general the shear cannot be determined directly from the image ellipticities [but
only the reduced shearγ(1−κ)−1], we can choose the sizeb1 of the inner boundary of the annulus
sufficiently large thatκ� 1 in the annulus, and thenγ ≈ g is an accurate approximation. Hence,
in that case the mean image ellipticity directly yields an estimate of the shear. Then, the integral
(232) can be transformed into a sum over galaxy images lying in the annulus, yieldingMap directly
in terms of the observables. This in turn has the great advantage that an error analysis ofMap is fairly
simple.

We consider circular apertures as an example, for which(b,λ) = (θ,ϕ) andC(ϕ) = exp(iϕ). Then,
ℑ(C∗Ċ) = 1, and

ℑ(γC∗Ċ∗) = γt(~θ;~θ0) :=− [γ1cos(2ϕ)+ γ2sin(2ϕ)] =−ℜ[γ(~θ +~θ0)e−2iϕ] , (233)

where we have defined thetangential componentγt of the shear relative to the point~θ0. Hence, for circular
apertures (232) becomes

Map(~θ0) =
∫

d2θQ(|~θ|)γt(~θ;~θ0) (234)

(Kaiser et al. 1994; Schneider 1996b). Theζ-statistics (227) is obtained from (234) by settingQ(θ) =
ϑ2

2 θ−2
[
π(ϑ2

2−ϑ2
1)
]−1

for ϑ1≤ θ≤ ϑ2 andQ(θ) = 0 otherwise, so that

ζ(~θ0;ϑ1,ϑ2) =
ϑ2

2[
π(ϑ2

2−ϑ2
1)
] ∫ d2θ

γt(~θ;~θ0)

|~θ|2
, (235)

where the integral is taken over the annulusϑ1≤ θ≤ ϑ2.
For practical purposes, the integral in (234) is transformed into a sum over galaxy images. Recalling

that ε is an estimator forγ in the weak-lensing case, and that the weight function can be chosen to avoid
the strong-lensing regime, we can write

Map(~θ0) =
1
n ∑

i
Q(|~θi−~θ0|)εti(~θ0) , (236)

where we have defined, in analogy toγt, the tangential componentεti of the ellipticity of an image at~θi

relative to the point~θ0 by
εti =−ℜ(εe−2iϕ) , (237)

10There are of course other ways to derive (232), e.g. by inserting (211) into (228). See Squires & Kaiser (1996) for a different
approach using Gauss’s law.
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ϕ is the polar angle of~θ−~θ0, andn is the number density of galaxy images. Thermsdispersionσ(Map) of
Map in the case of no lensing is found from the (two-dimensional) dispersionσε of the intrinsic ellipticity
of galaxies,

σ(Map) =
σε

21/2n

[
∑
i

Q2(|~θi−~θ0|)

]1/2

. (238)

Thermsdispersion in the presence of lensing will deviate only weakly fromσ(Map) as long as the assump-
tion of weak lensing in the annulus is satisfied. Hence,σ(Map) can be used as an error estimate for the
aperture mass and as an estimate for the signal-to-noise ratio of a mass measurement.

This opens the interesting possibility to search for (dark) mass concentrations using the aperture mass
(Schneider 1996b). Consider a weight functionU with the shape of a Mexican hat, and a data fieldU on
which apertures of angular sizeθ can be placed. For each aperture position, one can calculateMap and the
dispersion. The dispersion can be obtained either from the analytical formula (238), or it can be obtained
directly from the data, by randomising the position angles of all galaxy images within the aperture. The
dispersion can be obtained from many realisations of this randomisation process. Large values ofMap will
be obtained for mass concentrations whose characteristic size and shape is close to that of the chosen filter
functionU . Thus, by varying the sizeθ of the filter, different mass concentrations will preferentially be
selected. The aperture mass is insensitive to mass concentrations of much smaller and much larger angular
scales than the filter size.

We have considered in Sect. 4.5 the signal-to-noise ratio for the detection of a singular isothermal
sphere from its weak lensing effect. The estimate (177) was obtained by an optimal weighting scheme for
this particular mass distribution. Since real mass concentrations will deviate from this profile, and also
from the assumed symmetry, the filter functionU should have a more generic shape. In that case, the S/N
will have the same functional behaviour as in (177), but the prefactor depends on the exact shape ofU .
For the filter function used in Schneider (1996b), S/N is about 25% smaller than in (177). Nevertheless,
one expects that the aperture-mass method will be sensitive to search for intermediate-redshift halos with
characteristic velocity dispersions above∼ 600kms−1.

This expectation has been verified by numerical simulations, which also contained larger and smaller
scale mass perturbations. In addition, a detailed strong-lensing investigation of the cluster MS 1512+62
has shown that its velocity dispersion is very close to∼ 600kms−1, and it can be seen from the weak-
lensing image distortion alone with very high significance (Seitz et al. 1998b), supporting the foregoing
quantitative prediction. Thus, this method appears to be a very promising way to obtain amass-selected
sample of halos which would be of great cosmological interest (cf. Reblinsky & Bartelmann 1999b). We
shall return to this issue in Sect. 6.7.2.

5.3.2 Aperture Multipole Moments

Since it is possible to express the weighted mass within an aperture as an integral over the shear, with the
advantage that in the weak lensing regime this integral can be replaced by a sum over galaxy ellipticities, it
is natural to ask whether a similar result holds for multipole moments of the mass. As shown in Schneider
& Bartelmann (1997), this is indeed possible, and we shall briefly outline the method and the result.

Consider a circular aperture11 centred on a point~θ0. LetU(|~θ|) be a radial weight function, and define
then-th multipole moment by

Q(n) ≡
∫ ∞

0
dθθn+1U(θ)

∫ 2π

0
dϕeniϕ κ(~θ0 +~θ) . (239)

This can be replaced by an integral overγ in two ways: (239) can be integrated by parts with respect toϕ
(for n 6= 0), or with respect toθ, again utilising (219). The resulting expressions are assumed to contain
no boundary terms, which restricts the choice for the weight functionU(θ). The remaining integrals then
contain partial derivatives ofκ with respect toϕ andθ, respectively. Writing (219) in polar coordinates,
these partial derivatives can be replaced by partial derivatives of the shear components with respect toϕ and

11The method is not restricted to circular apertures, but this case will be most relevant for measuring multipole moments.
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θ. Integrating those by parts with respect to the appropriate coordinate, and enforcing vanishing boundary
terms, we find two different expressions for theQ(n):

Q(n)
ϕ,θ =

∫
d2θq(n)

ϕ,θ(~θ)γ(~θ0 +~θ) . (240)

The two expressions forq(n) are formally very different, although it can be shown that the resulting two
expressions forQ(n) are equivalent. The two very different equations for the same result are due to the fact
that the two components of the shearγ are not mutually independent, which was not used in the derivation
of (240).

We now have substantial freedom to choose the weight function and to select one of the two expressions
for Q(n), or even to take a linear combination of them. We note the following interesting examples:

1. The weight functionU(θ) can be chosen to vanish outside an annulus, to be piece-wise differentiable,
and to be zero on the inner and outer boundary of the annulus. TheQ(n) for n 6= 0 can then be
expressed as integrals of the shear over the annulus, with no further restrictions onU . In particular,
U(θ) does not need to be a compensated weight function.

2. U(θ) can be a piece-wise differentiable weight function which is constant forθ≤ θ1, and decreases
smoothly to zero atθ = θ2 > θ1. Again,Q(n) for n 6= 0 can be expressed as an integral of the shear
in the annulusθ1 ≤ θ ≤ θ2. Hence, as for the aperture mass, multipole moments in the inner circle
can be probed with the shear in the surrounding annulus.

3. One can choose, forn> 2, a piece-wise differentiable weight functionU(θ) which behaves likeθ−2n

for θ > θ2 and decreases to zero atθ = θ1 < θ2. In that case, the multipole moments of the matter
outside an annulus can be probed with data inside the annulus.

For practical applications, the integral in (240) is replaced by a sum over galaxy ellipticities. The dis-
persion of this sum is easily obtained in the absence of lensing, with an expression analogous to (238).
Therefore, the signal-to-noise ratio for the multipole moments is easily defined, and thus also the signifi-
cance of a multipole-moment detection.

5.4 Application to Observed Clusters

Soon after the parameter-free two-dimensional mass reconstruction was suggested by Kaiser & Squires
(1993), their method was applied to the cluster MS 1224 (Fahlman et al. 1994). Since then, several groups
have used it to infer the mass profiles of clusters. In parallel to this, several methods have been developed
to measure the shear from CCD data, accounting for PSF smearing and anisotropy, image distortion by
the telescope, noise, blending etc. – see the discussion in Sect. 4.6. We will now summarise and discuss
several of these observational results.

Tyson et al. (1990) made the first attempt to constrain the mass distribution of a cluster from a weak-
lensing analysis. They discovered a statistically significant tangential alignment of faint galaxy images
relative to the centre of the clusters A 1689 and Cl 1409+52. Their “lens distortion map” obtained from
the image ellipticities yields an estimate of the mass distribution in these clusters. A detailed analysis of
their method is given in Kaiser & Squires (1993). From a comparison with numerical simulations, Tyson
et al. showed that the best isothermal sphere model for the clusters has a typical velocity dispersion of
σv ∼ 1300±200kms−1 for both clusters. In particular, their analysis showed that diffuse dark matter in
the cluster centres is needed to account for the observed image distortions.

The inversion method developed by Kaiser & Squires (1993) provided a systematic approach to re-
construct the mass distribution in clusters. It was first applied to the cluster MS 1224+20 (Fahlman et al.
1994) at redshiftzd = 0.33, which had been selected for its high X-ray luminosity. Their square data field
with side-length∼ 14′ was composed of several exposures, most of them with excellent seeing. They esti-
mated the shear from image ellipticities, corrected for the PSF anisotropy, and applied a correction factor
f as defined in Sect. 4.6.1. They foundf ∼ 1.5 in simulations, in very good agreement with Wilson et al.
(1996). The resulting shear pattern, obtained from 2147 galaxy images, clearly shows a circular pattern
around the cluster centre as defined by the centroid of the optical and X-ray light. Using the Kaiser &
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Squires reconstruction method (215), Fahlman et al. produced maps of the dimension-less surface mass
densityκ(~θ), both by taking all galaxy images into account, and after splitting the galaxy sample into a
‘brighter’ and ‘fainter’ sample of roughly equal size. Although differing in detail, the resulting mass show
an overall similarity. In particular, the position of the mass centre is very similar in all maps.

Fahlman et al. applied the aperture mass method to determine the cluster mass – see (228) and (236) –
in an annulus centred on the cluster centre with inner radiusϑ1 = 2.76′ and an outer radius such that the
annulus nearly fits into their data field. The lower limit to the mean surface mass density in the annulus is
κ̄(2.76′′)≥ ζ = 0.06±0.013. To convert this into an estimate of the physical surface mass density and the
total mass inside the aperture, the mean distance ratioDds/Ds for the galaxy population has to be estimated,
or equivalently the mean value ofZ as defined after (226).

While the redshift distribution is known statistically for the brighter sub-sample from redshift surveys,
the use of the fainter galaxies requires an extrapolation of the galaxy redshifts. From that, Fahlman et al.
estimated the mass within a cylinder of radiusϑ1 = 2.76′, corresponding to 0.48h−1 Mpc for an Einstein-
de Sitter cosmology, to be∼ 3.5×1014h−1M�. This corresponds to a mass-to-light ratio (in solar units)
of M/L ∼ 800h. Carlberg et al. (1994) obtained 75 redshifts of galaxies in the cluster field, of which 30
are cluster members. From their line-of-sight velocity dispersion, the cluster mass can be estimated by a
virial analysis. The resulting mass is lower by a factor∼ 3 than the weak-lensing estimate. The mass-
to-light ratio from the virial analysis is much closer to typical values in lower-redshift clusters like Coma,
which hasM/L≈ 270h−1. The high mass estimate of this cluster was recently confirmed in a completely
independent study by Fischer (1999).

The origin of this large apparent discrepancy is not well understood yet, and several possibilities are
discussed in Kaiser et al. (1994). It should be pointed out that lensing measures the total mass inside a
cone, weighted by the redshift-dependent factorDdDds/Ds, and hence the lensing mass estimate possibly
includes substantial foreground and background material. While this may cause an overestimate of the
mass, it is quite unlikely to cause an overestimate of the mass-to-light ratio of the total material inside the
cone. Foreground material will contribute much more strongly to the light than to the measured mass, and
additional matter behind the cluster will not be very efficient as a lens. The uncertainty in the redshift dis-
tribution of the faint galaxies translates into an uncertainty in the mass. However, all background galaxies
would have to be put at a redshift∼ 4 to explain the mass discrepancy, while redshift surveys show that the
brighter sub-sample of Fahlman et al. has a mean redshift below unity. The mass estimate is only weakly
dependent on the assumed cosmological model. On the other hand, the light distribution of the cluster
MS 1224 is not circular, and it cannot be excluded that this cluster is not in virial equilibrium.

Two images of the cluster Cl 0024+17 were analysed by Bonnet et al. (1994). One was centred on the
cluster itself and yielded the shear in the inner part of the cluster. The second image was off-centred by
several arc minutes and allowed, for the first time, a shear measurement out to large radial distances. They
detected a clear shear signal out to distances& 1h−1Mpc. In addition, they found an apparent distortion of
the nearly circular shear pattern from the cluster which is most directly interpreted as a mass concentration.
However, it does not show an obvious concentration of galaxies. In fact, an X-ray observation of this
cluster reveals a weak X-ray source close to the position where the mass concentration was seen in the
shear map (Soucail et al. 2000), although with marginal significance. This cluster (atz = 0.39) hosts a
giant arc system and has an Einstein radius of∼ 30′′; together with the redshift ofz = 1.675 of the arc
(Broadhurst et al. 2000), this indicates that the cluster is indeed very massive. Despite that, the cluster is
a comparatively faint and cool X-ray source, indicating a clear and interesting discrepancy between mass
estimates from the X-rays and both strong and weak lensing.

Squires et al. (1996a) compared the mass profiles derived from weak lensing data and the X-ray emis-
sion of the cluster A 2218. Under the assumption that the hot X-ray-emitting intra-cluster gas is in hy-
drostatic equilibrium between gravity and thermal pressure support, the mass profile of the cluster can be
constrained. The reconstructed mass map qualitatively agrees with the optical and X-ray light distributions.
Using the aperture mass estimate, a mass-to-light ratio ofM/L = (440±80)h in solar units is found. The
radial mass profile appears to be flatter than isothermal. Within the error bars, it agrees with the mass pro-
file obtained from the X-ray analysis, with a slight indication that at large radii the lensing mass is larger
than the mass inferred from X-rays.

Abell 2218 also contains a large number of arcs and multiply-imaged galaxies which have been used
by Kneib et al. (1996) to construct a detailed mass model of the cluster’s central region. In addition to the
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main mass concentration, there is a secondary clump of cluster galaxies whose effects on the arcs is clearly
visible. The separation of these two mass centres is 67′′. Whereas the resolution of the weak lensing mass
map as obtained by Squires et al. is not sufficient to reveal a distinct secondary peak, the elongation of the
central density contours extend towards the secondary galaxy clump.

General agreement between the reconstructed mass map and the distribution of cluster galaxies and
X-ray emission has also been found for the two clusters Cl 1455+22 (z = 0.26) and Cl 0016+16 (z =
0.55) by Smail et al. (1995a). Both are highly X-ray luminous clusters in theEinsteinExtended Medium
Sensitivity Survey (EMSS; Stocke et al. 1991). The orientation and ellipticity of the central mass peak is
in striking agreement with those of the galaxy distribution and the X-ray map. However, the authors find
some indication that the mass is more centrally condensed than the other two distributions. In addition,
given the finite angular resolution of the mass map, the core size derived from weak lensing is most likely
only an upper bound to the true value, and in both clusters the derived core size is significantly larger than
found in clusters with giant luminous arcs (see, e.g., Fort & Mellier 1994).

The mass-to-light ratios for the two clusters are∼ 1000h and∼ 740h, respectively. However, at least
for Cl 0016+16, the mass scale is fairly uncertain, owing to the high cluster redshift and the unknown
redshift distribution of the faint galaxies. The mean value ofDds/Ds must be estimated from an assumed
distributionp(z).

The unprecedented imaging quality of the refurbishedHubble Space Telescope(HST) can be used
profitably for weak lensing analyses. Images taken with theWide Field Planetary Camera 2(WFPC2)
have an angular resolution of order 0.1′′, limited by the pixel size. Because of this superb resolution and
the lower sky background, the number density of galaxy images for which a shape can reliably be measured
is considerably larger than from the ground, so that higher-resolution mass maps can be determined. The
drawback is the small field covered by the WFPC2, which consists of 3 CCD chips with 80′′ side-length
each. Using the first publicly available deep image of a cluster obtained with the WFPC2, Seitz et al.
(1996) have constructed a mass map of the cluster Cl 0939+47 (z = 0.41). Figure 14 clearly shows a
mass peak near the left boundary of the frame shown. This maximum coincides with the cluster centre
as determined from the cluster galaxies (Dressler & Gunn 1992). Furthermore, a secondary maximum is
clearly visible in the mass map, as well as a pronounced minimum. When compared to the optical image,
a clear correlation with the bright (cluster) galaxies is obvious. In particular, the secondary maximum
and the minimum correspond to the same features in the bright galaxy distribution. A formal correlation
test confirms this similarity. Applying the maximum-likelihood mass reconstruction technique (Seitz et al.
1998c; see Sect. 5.4) to the same HST image, Geiger & Schneider (1999) constructed a higher-resolution
map of this cluster. The angular resolution achieved is much higher in the cluster centre, predicting a region
in which strong lensing effects may occur. Indeed, Trager et al. (1997) reported on a highly elongated arc
and a triple image, with both source galaxies having a redshiftz≈ 3.97.

The X-ray map of this cluster (Schindler & Wambsganss 1997) shows that the two mass peaks are also
close to two X-ray components. The determination of the total mass inside the WFPC2 frame is difficult,
for two reasons: First, the high redshift of the cluster implies that the mean value ofDds/Ds depends quite
sensitively on the assumed redshift distribution of the background galaxies. Second, the small field of the
WFPC2 precludes the measurement of the surface mass density at large distance whereκ tends to zero, and
thus the mass-sheet degeneracy implies a considerable uncertainty in the mass scale. Attempting to lift the
mass sheet degeneracy with the number-density effect – see Sect. 4.4.1 –, a mass-to-light ratio of∼ 250h
was derived within the WFPC2 aperture. This value is also affected by the unknown fraction of cluster
members in the catalog of faint galaxies. Seitz et al. (1996) assumed that the spatial distribution of faint
cluster galaxies follows that of brighter cluster galaxies. The striking difference between theM/L ratios
for this and the other clusters described above may be related to the fact that Cl 0939+47 is the highest-
redshift cluster in the Abell catalog (A 851). Hence, it was selected by its high optical luminosity, whereas
the previously mentioned clusters are all X-ray selected. The X-ray luminosity of Cl 0939+47 is fairly
small for such a rich cluster (Schindler & Wambsganss 1996). Since X-ray luminosity and cluster mass
are generally well correlated, the smallM/L-ratio found from the weak lensing analysis is in agreement
with the expectations based on the high optical flux and the low X-ray flux. Note that the large spread
of mass-to-light ratios as found by the existing cluster mass reconstructions is unexpected in the frame of
hierarchical models of structure formation and thus poses an interesting astrophysical problem.

Hoekstra et al. (1998) reconstructed the mass distribution in the cluster MS 1358+62 from a mosaic of
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Figure 14:Left panel:WFPC2 image of the cluster Cl0939+4713 (A 851); North is at the bottom, East to
the right. The cluster centre is located at about the upper left corner of the left CCD, a secondary maximum
of the bright (cluster) galaxies is seen close to the interface of the two lower CCDs, and a minimum in the
cluster light is at the interface between the two right CCDs. In the lensing analysis, the data from the small
CCD (the Planetary Camera) were not used.Right panel:The reconstructed mass distribution of A 851,
assuming a mean redshift of theN = 295 galaxies with 24≤ R≤ 25.5 of 〈z〉= 1. (from Seitz et al. 1996)

HST images, so that their data field in substantially larger than for a single HST pointing (about 8′×8′).
This work uses the correction method presented in Sect. 4.6.2, thus accounting for the relatively strong
PSF anisotropy at the edges of each WFPC2 chip. A weak-lensing signal out to 1.5Mpc is found. The
X-ray mass is found to be slightly lower than the dynamical mass estimate, but seems to agree well with
the lensing mass determination.

Luppino & Kaiser (1997) found a surprisingly strong weak-lensing signal in the field of the high-
redshift cluster MS 1054−03 (z= 0.83). This implies that the sheared galaxies must have an appreciably
higher redshift than the cluster, thus strongly constraining their redshift distribution. In fact, unless the
characteristic redshift of these faint background galaxies is& 1.5, this cluster would have an unrealistically
large mass. It was also found that the lensing signal from the bluer galaxies is stronger than from the redder
ones, indicating that the characteristic redshift of the bluer sample is higher. In fact, the mass estimated
assuming〈zs〉 = 1.5 agrees well with results from analyses of the X–ray emission (Donahue et al. 1998)
and galaxy kinematics (Tran et al. 1999).

Using an HST mosaic image in two filters, Hoekstra et al. (2000a) also studied MS 1054. They found
a tangential distortion which is smaller than that obtained by Luppino & Kaiser (1997) by about a factor
of 1.5, but fairly well in agreement with that obtained by Clowe et al. (2000) from Keck imaging. They
estimated the redshift distribution of the background galaxies from the photometric redshifts obtained in the
Hubble Deep Fields, both as a function of magnitude and of colour. This enabled them to study the relative
lensing strength〈Z〉 as a function of these two observables, finding, as expected, the lensing strength
increasing towards fainter magnitudes and, in agreement with Luppino & Kaiser (1997) and Clowe et al.
(2000), with bluer colour. The estimated mass is in very good agreement with that obtained from the X-ray
temperature of this cluster. The mass map shows three distinct peaks which are in good correspondence
with the observed distribution of cluster galaxies. Clowe et al. (1998) derived weak lensing maps for two
additional clusters atz∼ 0.8, namely MS 1137+66 atz= 0.783 and RXJ 1716+67 atz= 0.813.

The large-format CCD cameras allow weak-lensing studies of low-redshift clusters which subtend a
larger solid angle on the sky. As a first example, Joffre et al. (2000) obtained the mass map for the cluster
Abell 3667 (z= 0.055). Investigations of low-redshift clusters are particularly useful since for them more
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detailed X-ray and optical information is available than for higher-redshift ones.
The mass distribution in the supercluster MS 0302+17 atz= 0.42 was reconstructed by Kaiser et al.

(1998) in a wide-field image of size∼ 30′. The supercluster consists of three clusters which are very close
together on the sky and in redshift. The image contains about 30,000 galaxies from which a shear can be
measured. This shear was found to correlate strongly with the distribution of the early-type (foreground)
galaxies in the field, provided that the overall mass-to-light ratio is about 250h. Each of the three clusters,
which are also seen in X-rays, is recovered in the mass map. The ratios between mass and light or X-ray
emission differ slightly across the three clusters, but the differences are not highly significant.

A magnification effect was detected from the depletion of the number counts (see Sect. 4.4.1) in two
clusters. Fort et al. (1997) discovered that the number density of very faint galaxies drops dramatically near
the critical curve of the cluster Cl 0024+16, and remains considerably lower than the mean number density
out to about twice the Einstein radius. This is seen in photometric data with two filters. Fort et al. (1997)
interpret this broad depletion curve in terms of a broad redshift distribution of the background galaxies, so
that the location of the critical curve of the cluster varies over a large angular scale. A spatially-dependent
number depletion was detected in the cluster A 1689 by Taylor et al. (1998).

These examples should suffice to illustrate the current status of weak lensing cluster mass reconstruc-
tions. For additional results, see Squires et al. (1996b), Squires et al. (1997), Fischer et al. (1997), Fischer
& Tyson (1997), and Athreya et al. (1999). Many of the difficulties have been overcome; e.g., the method
presented in Sect. 4.6.2 appears to provide an accurate correction method for PSF effects. The quantitative
results, for example for theM/L-ratios, are somewhat uncertain due to the lack of sufficient knowledge on
the source redshift distribution, which applies in particular to the high-redshift clusters.

Further large-format HST mosaic images either are already or will soon become available, e.g. for the
clusters A 2218, A 1689, and MS 1054−03. Their analysis will substantially increase the accuracy of
cluster mass determinations from weak lensing compared to ground-based imaging.

5.5 Outlook

We have seen in the preceding subsection that first results on the mass distribution in clusters were derived
with the methods described earlier. Because weak lensing is now widely regarded as the most reliable
method to determine the mass distribution of clusters, since it does not rely on assumptions on the physical
state and symmetries of the matter distribution, further attempts at improving the method are in progress,
and some of them will briefly be outlined below.

In particular, we describe a method which simultaneously accounts for shear and magnification in-
formation, and which can incorporate constraints from strong-lensing features (such as arcs and multiple
images of background sources). A method for the determination of the local shear is described next which
does not rely on the detection and the quadrupole measurement of individual galaxies, and instead makes
use of the light from very faint galaxies which need not be individually detected. We will finally consider
the potential of weak lensing for determining the redshift distribution of galaxies which are too faint to be
investigated spectroscopically, and report on first results.

5.5.1 Maximum-Likelihood Cluster Reconstructions

The mass reconstruction method described above is a direct method: The locally averaged observed image
ellipticities 〈ε〉 are inserted into an inversion equation such as (217) to find the mass mapκ(~θ). The beauty
of this method is its simplicity and computational speed. Mass reconstructions from the observed image
ellipticities are performed in a few CPU seconds.

The drawback of this method is its lack of flexibility. No additional information can be incorporated
into the inversion process. For example, if strong-lensing features like giant arcs or multiple galaxy images
are observed, they should be included in the mass reconstruction. Since such strong-lensing features typ-
ically occur in the innermost parts of the clusters (at. 30′′ from cluster centres), they strongly constrain
the mass distribution in cluster cores which can hardly be probed by weak lensing alone due to its finite
angular resolution. A further example is the incorporation of magnification information, as described in
Sect. 4.4, which can in principle not only be used to lift the mass-sheet degeneracy, but also provides local
information on the shape of the mass distribution.
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An additional problem of direct inversion techniques is the choice of the smoothing scale which enters
the weight factorsui in (223). We have not given a guideline on how this scale should be chosen. Ideally, it
should be adapted to the data. In regions of strong shear, the signal-to-noise ratio of a shear measurement
for a fixed number of galaxy images is larger than in regions of weak shear, and so the smoothing scale can
be smaller there.

Recently, these problems have been attacked with inverse methods. Suppose the mass distribution of
a cluster is parameterised by a set of model parameterspk. These model parameters could then be varied
until the best-fitting model for the observables is found. Considering for example the observed image
ellipticities εi and assuming a non-critical cluster, the expectation value ofεi is the reduced shearg at the
image position, and the dispersion is determined (mainly) by the intrinsic dispersion of galaxy ellipticities
σε. Hence, one can define aχ2-function

χ2 =
Ng

∑
i=1

|εi−g(~θi)|2

σ2
ε

(241)

and minimise it with respect to thepk. A satisfactory model is obtained ifχ2 is of orderNg at its minimum,
as long as the number of parameters is much smaller thanNg. If the chosen parameterisation does not
achieve this minimum value, another one must be tried. However, the resulting mass model will depend on
the parameterisation which is a serious drawback relative to the parameter-free inversion methods discussed
before.

This problem can be avoided with ‘generic’ mass models. For instance, the deflection potentialψ(~θ)
can be composed of a finite sum of Fourier modes (Squires & Kaiser 1996), whose amplitudes are the
parameterspk.12 The number of Fourier modes can be chosen such that the resultingχ2 per degree of
freedom is approximately unity. Additional modes would then start to fit the noise in the data.

Alternatively, the values of the deflection potentialψ on a (regular) grid can be used as thepk. Bartel-
mann et al. (1996) employed the locally averaged image ellipticities and the size ratios〈ω〉/〈ω〉0 – see
(170) – on a grid. The corresponding expectation values of these quantities, the reduced shearg and the
magnificationµ, were calculated by finite differencing of the discretised deflection potentialψ. Since both
γ andκ, and thusµ, are unchanged under the transformationψ(~θ)→ ψ(~θ) + ψ0 +~a ·~θ, the deflection po-
tential has to be kept fixed at three grid points. If no magnification information is used, the mass-sheet
degeneracy allows a further transformation ofψ which leaves the expected image ellipticities invariant,
and the potential has to be kept fixed at four grid points.

A χ2-function was defined using the local dispersion of the image ellipticities and image sizes relative
to unlensed sizes of galaxies with the same surface brightness, and it was minimised with respect to the
values ofψ on the grid points. The grid spacing was chosen such that the resulting minimumχ2 has
approximately the correct value. Tests with synthetic data sets, using a numerically generated cluster mass
distribution, showed that this method reconstructs very satisfactory mass maps, and the total mass of the
cluster was accurately reproduced.

If a finer grid is used, the model for the deflection potential will reproduce noise features in the data. On
the other hand, the choice of a relatively coarse grid which yields a satisfactoryχ2 implies that the resolution
of the mass map is constant over the data field. Given that the signal increases towards the centre of the
cluster, one would like to use a finer grid there. To avoid over-fitting of noise, the maximum-likelihood
method can be complemented by a regularisation term (see Press et al. 1986, Chap. 18). As shown by
Seitz et al. (1998c), a maximum-entropy regularisation (Narayan & Nityananda 1986) is well suited for
the problem at hand. As in maximum-entropy image restoration (e.g., Lucy 1994), a prior is used in the
entropy term which is a smoothed version of the current density field, and thus is being adapted during the
minimisation. The relative weight of the entropy term is adjusted such that the resulting minimumχ2 is of
order unity per degree of freedom.

In this scheme, the expectation values and dispersions of the individual image ellipticities and sizes are
found by bi-linear interpolation ofκ andγ on the grid which themselves are obtained by finite differencing

12It is important to note that the deflection potentialψ rather than the surface mass densityκ (as in Squires & Kaiser 1996) should
be parameterised, because shear and surface mass density depend on the local behaviour ofψ, while the shearcannotbe obtained
from the localκ, and not even fromκ on a finite field. In addition, the local dependence ofκ andγ on ψ is computationally much
more efficient than calculatingγ by integrating overκ as in Bridle et al. (1998).
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of the potential. When tested on synthetic data sets, this refined maximum-likelihood method produces
mass maps with considerably higher resolution near the cluster centre without over-fitting the noise at
larger cluster-centric distances. The practical implementation of this method is somewhat complicated. In
particular, if critical clusters are studied, some modifications have to be included to allow the minimisation
algorithm to move critical curves across galaxy images in the lens plane. However, the quality of the
reconstruction justifies the additional effort, especially if high-quality data from HST images are available.
A first application of this method is presented by Geiger & Schneider (1999).

Inverse methods such as the ones described here are likely to become the standard tool for cluster mass
profile reconstruction, owing to their flexibility. As mentioned before, additional constraints from strong
lensing signatures such as arcs and multiply-imaged sources, can straightforwardly be incorporated into
these methods. The additional numerical effort is negligible compared to the efforts needed to gain the
observational data. Direct inversion methods will certainly retain an important role in this field, to obtain
quick mass maps during the galaxy image-selection process (e.g., cuts in colour and brightness can be
applied). Also, a mass map obtained by a direct method as a starting model in the inverse methods reduces
the computational effort.

5.5.2 The Auto-Correlation Function of the Extragalactic Background Light

So far, we described how shear can be determined from ellipticities of individual galaxy images on a
CCD. In that context, a galaxy image is a statistically significant flux enhancement on the CCD covering
several contiguous pixels and being more extended than the PSF as determined from stars. Reducing the
threshold for the signal-to-noise per object, the number density of detected galaxies increases, but so does
the fraction of misidentifications. Furthermore, the measured ellipticity of faint galaxies has larger errors
than that of brighter and larger images. The detection threshold therefore is a compromise between high
number density of images and significance per individual object.

Even the faintest galaxy images whose ellipticity cannot be measured reliably still contain information
on the lens distortion. It is therefore plausible to use this information, by ‘adding up’ the faintest galaxies
statistically. For instance, one could co-add their brightness profiles and measure the shear of the combined
profiled. This procedure, however, is affected by the uncertainties in defining the centres of the faint
galaxies. Any error in the position of the centre, as defined in (208), will affect the resulting ellipticity.

To avoid this difficulty, and also the problem of faint object definition at all, van Waerbeke et al. (1997)
have suggested considering the auto-correlation function (ACF) of the ‘background’ light. Most of the sky
brightness is due to atmospheric scattering, but this contribution is uniform. Fluctuations of the brightness
on the scale of arc seconds is supposedly mainly due to very faint galaxies. Therefore, these fluctuations
should intrinsically be isotropic. If the light from the faint galaxies propagates through a tidal gravitational
field, the isotropy will be perturbed, and this provides a possibility to measure this tidal field.

Specifically, if I(~θ) denotes the brightness distribution as measured on a CCD, andĪ is the brightness
averaged over the CCD (or a part of it, see below), the auto-correlation functionξ(~θ) of the brightness is
defined as

ξ(~θ) =
〈(

I(~ϑ)− Ī
)(

I(~ϑ +~θ)− Ī
)〉

~ϑ
, (242)

where the average is performed over all pairs of pixels with separation~θ. From the invariance of sur-
face brightness (94, page 31) and the locally linearised lens mapping,I(~θ) = I (s)(A~θ), one finds that the
observed ACF is related to the intrinsic ACFξ(s), defined in complete analogy to (242), by

ξ(~θ) = ξ(s)(A~θ) . (243)

Thus the transformation from intrinsic to observed ACF has the same functional form as the transformation
of surface brightness. In analogy to the definition of the quadrupole tensorQ for galaxy images – see (209)
– the tensor of second moments of the ACF is defined as

Mi j =
∫

d2θξ(~θ)θiθ j∫
d2θ ξ(~θ)

. (244)
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The transformation between the observed quadrupole tensorM and the intrinsic one,M (s), is the same
as for the moment tensor of image ellipticities, (212),M (s) = AM A . As shown by van Waerbeke et al.
(1997), the tensorM directly determines the distortionδ,

δ =
M11−M22+2iM12

M11+ M22
. (245)

Hence,δ is related toM in the same way as the complex ellipticityχ is related toQ. In some sense, the
ACF plays the role of a single ‘equivalent’ image from which the distortion can be determined, instead of
an ensemble average over individual galaxy ellipticities.

Working with the ACF has several advantages. First, centres of galaxy images do not need to be deter-
mined, which avoids a potential source of error. Second, the ACF can be used with substantial flexibility.
For instance, one can use all galaxy images which are detected with high significance, determine their el-
lipticity, and obtain an estimate ofδ from them. Sufficiently large circles containing these galaxies can be
cut out of the data frame, so that the remaining frame is reminiscent of a Swiss cheese. The ACF on this
frame provides another estimate ofδ, which is independent information and can statistically be combined
with the estimate from galaxy ellipticities. Or one can use the ACF only on galaxy images detected within
a certain magnitude range, still avoiding the need to determine centres.

Third, on sufficiently deep images with the brighter objects cut out as just described, one might assume
that the intrinsic ACF is due to a very large number of faint galaxies, so that the intrinsic ACF becomes
a universal function. This function can in principle be determined from deep HST images. In that case,
one also knows the width of the intrinsic ACF, as measured by the trace or determinant ofM , and can
determine the magnification from the width of the observed ACF, very similar to the method discussed in
Sect. 4.4.2, but with the advantage of dealing with a single ‘universal source’.

If this universal intrinsic ACF does exist, corrections of the measuredM for a PSF considerably sim-
plify compared to the case of individual image ellipticities, as shown by van Waerbeke et al. (1997). They
performed several tests on synthetic data to demonstrate the potential of the ACF method for the recovery
of the shear applied to the simulated images. van Waerbeke et al. determined shear fields of two clusters,
with several magnitude thresholds for the images which were punched out. A comparison of these shear
fields with those obtained from the standard method using galaxy ellipticities clearly shows that the ACF
method is at least competitive, but since it provides additional information from those parts of the CCD
which are unused by the standard method, it should in be employed any case. The optimal combination of
standard method and ACF still needs to be investigated, but detailed numerical experiments indicate that
the ACF may be the best method for measuring very weak shear amplitudes (L. van Waerbeke & Y. Mellier,
private communication).

5.5.3 The Redshift Distribution of Very Faint Galaxies

Galaxy redshifts are usually determined spectroscopically. A successful redshift measurement depends on
the magnitude of the galaxy, the exposure time, and the spectral type of the galaxy. If it shows strong
emission or absorption lines, as star-forming galaxies do, a redshift can much easier be determined than
in absence of strong spectral features. The recently completed Canadian-French Redshift Survey (CFRS)
selected 730 galaxies in the magnitude interval 17.5 ≤ I ≤ 22.5 (see Lilly et al. 1995 and references
therein). For 591 of them (81%), redshifts were secured with multi-slit spectroscopy on a 3.6m telescope
(CFHT) with a typical exposure time of∼ 8 hours. Whereas the upcoming 10m-class telescopes will be
able to perform redshift surveys to somewhat fainter magnitude limits, it will be difficult to secure fairly
complete redshift information of a flux-limited galaxy sample fainter thanI ∼ 24. In addition, it can be
expected that many galaxies in a flux-limited sample with fainter threshold will have redshifts between
∼ 1.2 and∼ 2.2, where the cleanest spectral features, the OII emission line atλ = 372.7 nm and the
λ = 400 nm break are shifted beyond the region where spectroscopy can easily be done from the ground.

As we have seen, the calibration of cluster mass distributions depends on the assumed redshift distribu-
tion of the background galaxies. Most of the galaxies used for the reconstruction are considerably fainter
than those magnitude limits for which complete redshift samples are available, so that this mass calibration
requires an extrapolation of the redshift distribution from brighter galaxy samples. The fact that lensing
is sensitive to the redshift distribution is not only a source of uncertainty, but also offers the opportunity
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to investigate the redshift distribution of galaxies too faint to be investigated spectroscopically. Several
approaches towards a redshift estimate of faint galaxies by lensing have been suggested, and some of them
have already shown spectacular success, as will be discussed next.

First of all, a strongly lensed galaxy (e.g. a giant luminous arc) is highly magnified, and so the grav-
itational lens effect allows to obtain spectra of objects which would be too faint for a spectroscopic in-
vestigation without lensing. It was possible in this way to measure the redshifts of several arcs, e.g., the
giant arc in A 370 atz= 0.724 (Soucail et al. 1988), the arclet A 5 in A 370 atz= 1.305 (Mellier et al.
1991), the giant arc in Cl 2244−02 atz= 2.237 (Mellier et al. 1991), and the ‘straight arc’ in A 2390 at
z= 0.913 (Pello et al. 1991). For a more complete list of arc redshifts, see Fort & Mellier (1994). A fair
fraction of galaxies with redshiftz& 4 have been found behind clusters, for example two arclet sources
at z≈ 4.05 behind A 2390 (Frye & Broadhurst 1998, Pelló et al. 1999b), two sources atz≈ 3.97 behind
Cl 0939+4713 (Trager et al. 1997), and two sources behind MS 1358+62, which for a few months held
the redshift record ofz= 4.92 (Franx et al. 1997).

If the cluster contains several strong-lensing features, the mass model can be sufficiently well con-
strained to determine the arc magnifications (if they are resolved in width, which has become possible
only from imaging with the refurbished HST), and thus to determine the unlensed magnitude of the source
galaxies, some of which are fainter thatB∼ 25.

Some clusters, such as A 370 and A 2218, were observed in great detail both from the ground and with
HST, and show a large number of strongly lensed images. They can be used to construct very detailed mass
models of the cluster centre (e.g., Kneib et al. 1993; Kneib et al. 1996). An example is A 2218, in which
at least five multiply imaged systems were detected (Kneib et al. 1996), and several giant arcs were clearly
seen. Refining the mass model for A 2218 constructed from ground-based data (Kneib et al. 1995) with
the newly discovered or confirmed strong lensing features on the WFPC2 image, a strongly constrained
mass model for the cluster can be computed and calibrated by two arc redshifts (a five-image system at
z= 0.702, and atz= 1.034).

Up to now, the deepest HST image taken in the direction of a cluster was on A 1689, perhaps the
strongest lensing cluster yet detected (HST proposal number 6004, PI J. A. Tyson). This impressive image
provides a wealth of strong-lensing features which should allow the construction of a very detailed mass
model for its central region. In addition, a large-scale, though fairly shallow, image mosaic has been
obtained with HST (HST proposal number 5993, PI N. Kaiser). These two data sets will yield the most
detailed mass profile currently obtainable.

Visual inspection of the WFPC2 image immediately shows a large number of arclets in A 2218, which
surround the cluster centre in a nearly perfect circular pattern. These arclets have very small axis ratios, and
most of them are therefore highly distorted. The strength of the distortion depends on the redshift of the
corresponding galaxy. Assuming that the sources have a considerably smaller ellipticity than the observed
images, one can then estimate a redshift range of the galaxy.

To be more specific, letp(s)(ε(s)) be the probability density of the intrinsic source ellipticity, assumed
for simplicity to be independent of redshift. The corresponding probability distribution for the image
ellipticity is then

p(ε) = p(s)
(

ε(s)(ε)
)

det

(
∂ε(s)

∂ε

)
, (246)

where the transformationε(s)(ε) is given by eq. (135, page 40), and the final term is the Jacobian of this
transformation. For each arclet near the cluster centre where the mass profile is well constrained, the value
of the reduced shearg is determined up to the unknown redshift of the source – see eq. (143, page 43).

One can now try to maximisep(ε) with respect to the source redshift, and in that way find the most
likely redshift for the arc.13 Depending on the ellipticity of the arclet and the local values of shear and
surface mass density, three cases have to be distinguished: (1) the arclet has the ‘wrong’ orientation relative
to the local shear, i.e., if the source lies behind the cluster, it must be even more elliptical than the observed
arclet. For the arclets in A 2218, this case is very rare. (2) The most probable redshift is ‘at infinity’, i.e.,

13 This simplified treatment neglects the magnification bias, i.e. the fact that at locations of high magnification the redshift proba-
bility distribution is changed – see Sect. 4.3.2.
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even if the source is placed at very high redshift, the maximum ofp(ε) is not reached. (3)p(ε) attains a
maximum at a finite redshift. This is by far the most common case in A 2218.

This method, first applied to A 370 (Kneib et al. 1994), was used to estimate the redshifts of∼ 80
arclets in A 2218 brighter thanR∼ 25. Their typical redshifts are estimated to be of order unity, with the
fainter sub-sample 24≤ R≤ 25 extending to somewhat higher redshifts. For one of them, a redshift range
2.6. z. 3.3 was estimated, and a spectroscopic redshift ofz = 2.515 was later measured (Ebbels et al.
1996), providing spectacular support for this method. Additional spectroscopic observations of arclets in
A 2218 were conducted and further confirmed the reliability of the method for the redshift estimates of
individual arclets (Ebbels et al. 1998).

Another success of this arclet redshift estimate was recently achieved in the cluster A 2390, which can
also be modelled in great detail from HST data. There, two arclets with very strong elongation did not fit
into the cluster mass model unless they are at very high redshift. Spectroscopic redshifts ofz∼ 4.05 were
recently measured for these two arclets (Frye & Broadhurst 1998, Pelló et al. 1999a).

However, several issues should be kept in mind. First, the arclets for which a reliable estimate of the
redshift can be obtained are clearly magnified, and thus the sample is magnification biased. Since it is well
known that the galaxy number counts are considerable steeper in the blue than in the red (see, e.g., Smail
et al. 1995a), blue galaxies are preferentially selected as arclets – see eq. (165). This might also provide the
explanation why most of the giant arcs are blue. Therefore, the arclets represent probably a biased sample
of faint galaxies. Second, the redshift dependence ofp(ε) enters through the ratioDds/Ds. For a cluster
at relatively low redshift, such as A 2218 (zd = 0.175), this ratio does not vary strongly with redshift once
the source redshift is larger than∼ 1. Hence, to gain more accurate redshift estimates for high-redshift
galaxies, a moderately-high redshift cluster should be used.

The method just described is not a real ‘weak lensing’ application, but lies on the borderline between
strong and weak lensing. With weak lensing, the redshifts ofindividual galaxy images cannot be deter-
mined, but some statistical redshift estimates can be obtained. Suppose the mass profile of a cluster has
been reconstructed using the methods described in Sect. 5.2 or Sect. 5.5.1, for which galaxy images in a
certain magnitude range were used. If the cluster contains strong-lensing features with spectroscopic in-
formation (such as a giant luminous arc with measured redshift), then the overall mass calibration can be
determined, i.e., the factor〈Z〉 – see Sect. 4.3.2 – can be estimated, which provides a first integral constraint
on the redshift distribution.

Repeating this analysis with several such clusters at different redshifts, further estimates of〈Z〉 with
differentDd are obtained, and thus additional constraints on the redshift distribution. In addition, one can
group the faint galaxy images into sub-samples, e.g., according to their apparent magnitude. Ignoring for
simplicity the magnification bias (which can safely be done in the outer parts of clusters), one can determine
〈Z〉 for each magnitude bin. Restricting our treatment to the regions of weak lensing only, such that|γ|� 1,
κ� 1, the expectation value of the ellipticityεi of a galaxy at position~θi is 〈Z〉γ(~θi), and so an estimate of
〈Z〉 for the galaxy sub-sample under consideration is

〈Z〉=
∑ℜ

(
γ(~θi)ε∗i

)
∑ |γ(~θi)|2

. (247)

In complete analogy, Bartelmann & Narayan (1995) suggested the ‘lens parallax method’, an algorithm
for determining mean redshifts for galaxy sub-samples at fixed surface brightness, using the magnification
effect as described in Sect. 4.4.2. Since the surface brightnessI is most likely much more strongly corre-
lated with galaxy redshift than the apparent magnitude (due to the(1+z)−4 decrease of bolometric surface
brightness with redshift), a narrow bin inI will probably correspond to a fairly narrow distribution in red-
shift, allowing to relate〈Z〉 of a surface brightness bin fairly directly to a mean redshift in that bin, while
〈Z〉 in magnitude bins can only be translated into redshift information with a parameterised model of the
redshift distribution. On the other hand, apparent magnitudes are easier to measure than surface brightness
and are much less affected by seeing.

Even if a cluster without strong lensing features is considered, the two methods just described can be
applied. The mass reconstruction then gives the mass distribution up to an overall multiplicative constant.
We assume here that the mass-sheet degeneracy can be lifted, either using the magnification effect as
described in Sect. 5.4, or by extending the observations so sufficiently large distances so thatκ ≈ 0 near
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the boundary of the data field. The mass scale can then be fixed by considering the brightest sub-sample of
galaxy images for which a shear signal is detected if they are sufficiently bright for their redshift probability
distribution to be known from spectroscopic redshift surveys (Bartelmann & Narayan 1995).

Whereas these methods have not yet rigorously been applied, there is one observational result which
indicates that the faint galaxy population has a relatively high median redshift. In a sequence of clusters
with increasing redshift, more and more of the faint galaxies will lie in the foreground or very close behind
the cluster and therefore be unlensed. The dependence of the observed lensing strength of clusters on their
redshift can thus be used as a rough indication of the median redshift of the faint galaxies. This idea was put
forward by Smail et al. (1994), who observed three clusters with redshiftsz= 0.26,z= 0.55 andz= 0.89.
In the two lower-redshift clusters, a significant weak lensing signal was detected, but no significant signal
in the high-redshift cluster. From the detection, models for the redshift distribution of faintI ≤ 25 can be
ruled out which predict a large fraction to be dwarf galaxies at low redshift. The non-detection in the high-
redshift cluster cannot easily be interpreted since little information (e.g., from X-ray maps) is available for
this cluster, and thus the absence of a lensing signal may be due to the cluster being not massive enough.

However, the detection of a strong shear signal in the cluster MS 1054−03 atz = 0.83 (Luppino &
Kaiser 1997) implies that a large fraction of galaxies withI ≤ 25.5 must lie at redshifts larger thanz∼ 1.5.
They split their galaxy sample into red and blue sub-samples, as well as into brighter and fainter sub-
samples, and found that the shear signal is mainly due to the fainter and the blue galaxies. If all the faint blue
galaxies have a redshiftzs = 1.5, the mass-to-light ratio of this cluster is estimated to beM/L∼ 580h, and if
they all lie at redshiftzs = 1, M/L exceeds∼ 1000h. This observational result, which is complemented by
several additional shear detections in high-redshift clusters, one of them atz= 0.82 (G. Luppino, private
communication), provides the strongest evidence for the high-redshift population of faint galaxies. In
addition, it strongly constrains cosmological models; anΩ0 = 1 cosmological model predicts the formation
of massive clusters only at relatively low redshifts (e.g., Richstone et al. 1992; Bartelmann et al. 1993) and
has difficulties to explain the presence of strong lensing clusters at redshiftz∼ 0.8.

Recently, Lombardi & Bertin (1999c) and Gautret et al. (2000) suggested that weak lensing by galaxy
clusters can be used to constrain the cosmological parametersΩ0 andΩΛ. Both of these two different
methods assume that the redshift of background galaxies can be estimated, e.g. with sufficiently precise
photometric-redshift techniques. Owing to the dependence of the lensing strength on the angular-diameter
distance ratioDds/Ds, sufficiently detailed knowledge of the mass distribution in the lens and of the source
redshifts can be employed to constrain these cosmological parameters. Such a determination through purely
geometrical methods would be very valuable, although the observational requirements for applying these
methods appear fairly demanding at present.
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6 Weak Cosmological Lensing

In this section, we review how weak density perturbations in otherwise homogeneous and isotropic
Friedmann-Lemâıtre model universes affect the propagation of light. We first describe how light propagates
in the homogeneous and isotropic background models, and then discuss how local density inhomogeneities
can be taken into account. The result is a propagation equation for the transverse separation between the
light rays of a thin light bundle.

The solution of this equation leads to the deflection angle~α of weakly deflected light rays. In close
analogy to the thin-lens situation, half the divergence of the deflection angle can be identified with an
effective surface-mass densityκeff. The power spectrum ofκeff is closely related to the power spectrum of
the matter fluctuations, and it forms the central physical object of the further discussion. Any two-point
statistics of cosmic magnification and cosmic shear can then be expressed in a fairly simple manner in
terms of the effective-convergence power spectrum.

We discuss several applications, among which are the uncertainty in brightness determinations of cos-
mologically distant objects due to cosmic magnification, and several measures for cosmic shear, one of
which is particularly suited for determining the effective-convergence power spectrum. At the end of
this chapter, we turn to higher-order statistical measures of cosmic lensing effects, which reflect the non-
Gaussian nature of the non-linearly evolved density perturbations.

When we give numerical examples, we generally employ four different model universes. All have the
CDM power spectrum for density fluctuations, but different values for the cosmological parameters. They
are summarised in Tab. 1. We choose two Einstein-de Sitter models, SCDM andσCDM, normalised either
to the local abundance of rich clusters or toσ8 = 1, respectively, and two low-density models, OCDM and
ΛCDM, which are cluster normalised and either open or spatially flat, respectively.

Table 1: Cosmological models and their parameters used for numerical examples

Model Ω0 ΩΛ h Normalisation σ8

SCDM 1.0 0.0 0.5 cluster 0.5
σCDM 1.0 0.0 0.5 σ8 1.0
OCDM 0.3 0.0 0.7 cluster 0.85
ΛCDM 0.3 0.7 0.7 cluster 0.9

Light propagation in inhomogeneous model universes has been the subject of numerous studies. Among
them are Zel’dovich & Ya.B. (1964), Dashevskii et al. (1965), Kristian & Sachs (1966), Gunn (1967),
Jaroszynski et al. (1990), Babul & Lee (1991), Bartelmann & Schneider (1991), Blandford et al. (1991),
Miralda-Escud́e (1991), and Kaiser (1992). Non-linear effects were included analytically by Jain & Seljak
(1997), who also considered statistical effects of higher than second order, as did Bernardeau et al. (1997).
A particularly suitable measure for cosmic shear was introduced by Schneider et al. (1998a).

6.1 Light Propagation; Choice of Coordinates

As outlined in Sect. 3.2.1 (page 33), the governing equation for the propagation of thin light bundles
through arbitrary space times is the equation of geodesic deviation (e.g. Misner et al. 1973,§ 11; Schneider
et al. 1992,§ 3.5), or Jacobi equation (107, page 34). This equation implies that the transverse physical
separation~ξ between neighbouring rays in a thin light bundle is described by the second-order differential
equation

d2~ξ
dλ2 = T ~ξ , (248)

whereT is theoptical tidal matrix(109, page 34) which describes the influence of space-time curvature on
the propagation of light. The affine parameterλ has to be chosen such that it locally reproduces the proper
distance and increases with decreasing time, hence dλ = −cadt. The elements of the matrixT then have
the dimension [length]−2.
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We already discussed in Sect. 3.2.1 that the optical tidal matrix is proportional to the unit matrix in a
Friedmann-Lemâıtre universe,

T = R I , (249)

where the factorR is determined by the Ricci tensor as in eq. (110, page 34). For a model universe filled
with a perfect pressure-less fluid,R can be written in the form (112, page 35).

It will prove convenient for the following discussion to replace the affine parameterλ in eq. (248) by the
comoving distancew, which was defined in eq. (3, page 8) before. This can be achieved using eqs. (115)
and (116) together with the definition of Hubble’s parameter,H(a) = ȧa−1. Additionally, we introduce
thecomovingseparation vector~x = a−1~ξ. These substitutions leave the propagation equation (248) in the
exceptionally simple form

d2~x
dw2 +K~x =~0 , (250)

whereK is the spatial curvature given in eq. (30, page 11). Equation (250) has the form of an oscillator
equation, hence its solutions are trigonometric or hyperbolic functions, depending on whetherK is positive
or negative. In the special case of spatial flatness,K = 0, the comoving separation between light rays is a
linear function of distance.

6.2 Light Deflection

We now proceed by introducing density perturbations into the propagation equation (250). We assume
throughout that the Newtonian potentialΦ of these inhomogeneities is small,|Φ|� c2, that they move with
velocities much smaller than the speed of light, and that they are localised, i.e. that the typical scales over
which Φ changes appreciably are much smaller than the curvature scale of the background Friedmann-
Lemâıtre model. Then, there exists a local neighbourhood around each density perturbation which is
large enough to contain the perturbation completely and still small enough to be considered flat. Under
these circumstances, the metric is well approximated by the first post-Newtonian order of the Minkowski
metric (120, page 36). It then follows from eq. (120) that the effective local index of refraction in the
neighbourhood of the perturbation is

dl
dt

= n = 1− 2Φ
c2 . (251)

Fermat’s principle (e.g. Blandford & Narayan 1986; Schneider 1985) demands that the light travel time
along actual light paths is stationary, hence the variation of

∫
ndl must vanish. This condition implies that

light rays are deflected locally according to

d2~x
dw2 =− 2

c2 ∇⊥Φ . (252)

In weakly perturbed Minkowski space, this equation describes how anactuallight ray is curved away from
a straight line in unperturbed Minkowski space. It is therefore appropriate for describing light propagation
through e.g. the Solar system and other well-localised mass inhomogeneities.

This interpretation needs to be generalised for large-scale mass inhomogeneities embedded in an ex-
panding cosmological background, since the meaning of a “straight” fiducial ray is then no longer obvious.
In general, any physical fiducial ray will also be deflected by potential gradients along its way. We can,
however, interpret~x as the comoving separation vector between an arbitrarily chosen fiducial light ray and
a closely neighbouring light ray. The right-hand side of eq. (252) must then contain thedifference∆(∇⊥Φ)
of the perpendicular potential gradients between the two rays to account for therelativedeflection of the
two rays.

Let us therefore imagine a fiducial ray starting at the observer (w = 0) into direction~θ =~0, and a
neighbouring ray starting at the same point but into direction~θ 6=~0. Let further~x(~θ,w) describe the
comoving separation between these two light rays at comoving distancew. Combining the cosmological
contribution given in eq. (250) with the modified local contribution (252) leads to the propagation equation

d2~x
dw2 +K~x =− 2

c2 ∆
{

∇⊥Φ[~x(~θ,w),w]
}
. (253)
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The notation on the right-hand side indicates that the difference of the perpendicular potential gradients has
to be evaluated between the two light rays which have comoving separation~x(~θ,w) at comoving distance
w from the observer.

Linearising the right-hand side of eq. (253) in~x immediately returns the geodesic deviation equation
(248) with the full optical tidal matrix, which combines the homogeneous cosmological contribution (112,
page 35) with the contributions of local perturbations (121, page 36).

Strictly speaking, the comoving distancew, or the affine parameterλ, are changed in the presence of
density perturbations. Here, we assume that the global properties of the weakly perturbed Friedmann-
Lemâıtre models remain the same as in the homogeneous and isotropic case, and under this assumption the
comoving distancew remains the same as in the unperturbed model.

To solve eq. (253), we first construct a Green’s functionG(w,w′), which has to be a suitable linear
combination of either trigonometric or hyperbolic functions since the homogeneous equation (253) is an
oscillator equation. We further have to specify two boundary conditions. According to the situation we
have in mind, these boundary conditions read

~x =~0 ,
d~x
dw

=~θ (254)

at w = 0. The first condition states that the two light rays start from the same point, so that their initial
separation is zero, and the second condition indicates that they set out into directions which differ by~θ.

The Green’s function is then uniquely determined by

G(w,w′) =
{

fK(w−w′) for w> w′

0 otherwise
, (255)

with fK(w) given in eq. (4, page 8). As a function of distancew, the comoving separation between the two
light rays is thus

~x(~θ,w) = fK(w)~θ− 2
c2

∫ w

0
dw′ fK(w−w′)∆

{
∇⊥Φ[~x(~θ,w′),w′]

}
. (256)

The perpendicular gradients of the Newtonian potential are to be evaluated along the true paths of the two
light rays. In its exact form, eq. (256) is therefore quite involved.

Assuming that the change of the comoving separation vector~x between the twoactualrays due to light
deflection is small compared to the comoving separation ofunperturbedrays,

|~x(~θ,w′)− fK(w′)~θ|
| fK(w′)~θ|

� 1 , (257)

we can replace~x(~θ,w′) by fK(w′)~θ in the integrand to arrive at a much simpler expression which corre-
sponds to the Born approximation of small-angle scattering. The Born approximation allows us to replace
the difference of the perpendicular potential gradients with the perpendicular gradient of the potential dif-
ference. Taking the potential difference then amounts to adding a term to the potential which depends on
the comoving distancew′ from the observer only. For notational simplicity, we can therefore rename the
potential difference∆Φ between the two rays toΦ.

It is an important consequence of the Born approximation that the Jacobian matrix of the lens mapping
(95, page 31; 275 below) remains symmetric even in the case of cosmological weak lensing. In a general
multiple lens-plane situation, this is not the case (Schneider et al. 1992, chapter 9).

If the two light rays propagated through unperturbed space-time, their comoving separation at distance
w would simply be~x′(~θ,w) = fK(w)~θ, which is the first term on the right-hand side of eq. (256). The
net deflection angle at distancew between the two rays is the difference between~x′ and~x, divided by the
angular diameter distance tow, hence

~α(~θ,w) =
fK(w)~θ−~x(~θ,w)

fK(w)
=

2
c2

∫ w

0
dw′

fK(w−w′)
fK(w)

∇⊥Φ[ fK(w′)~θ,w′] . (258)
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Again, this is the deflection angle of a light ray that starts out at the observer into direction~θ relative
to a nearby fiducial ray. Absolute deflection angles cannot be measured. All measurable effects of light
deflection therefore only depend onderivativesof the deflection angle (258), so that the choice of the
fiducial ray is irrelevant for practical purposes. For simplicity, we call~α(~θ,w) the deflection angle at
distancew of a light ray starting into direction~θ on the observer’s sky, bearing in mind that it is the
deflection angle relative to an arbitrarily chosen fiducial ray, so that~α(~θ,w) is far from unique.

In an Einstein-de Sitter universe,fK(w) = w. Definingy = w′/w, eq. (258) simplifies to

~α(~θ,w) =
2w
c2

∫ 1

0
dy(1−y)∇⊥Φ(wy~θ,wy) . (259)

Clearly, the deflection angle~α depends on the direction~θ on the sky into which the light rays start to
propagate, and on the comoving distancew to the sources.

Recall the various approximations adopted in the derivation of eq. (258): (i) The density perturbations
are well localised in an otherwise homogeneous and isotropic background, i.e. each perturbation can be
surrounded by a spatially flat neighbourhood which can be chosen small compared to the curvature radius
of the background model, and yet large enough to encompass the entire perturbation. In other words, the
largest scale on which the density fluctuation spectrumPδ(k) has appreciable power must be much smaller
than the Hubble radiusc/H0. (ii) The Newtonian potential of the perturbations is small,Φ� c2, and typical
velocities are much smaller than the speed of light. (iii) Relative deflection angles between neighbouring
light rays are small enough so that the difference of the transverse potential gradient can be evaluated at
the unperturbed path separationfK(w)~θ rather than the actual one. Reassuringly, these approximations are
very comfortably satisfied even under fairly extreme conditions. The curvature radius of the Universe is of
ordercH−1

0 = 3000h−1Mpc and therefore much larger than perturbations of even several tens of Mpc’s in
size. Typical velocities in galaxy clusters are of order 103kms−1, much smaller than the speed of light, and
typical Newtonian potentials are of orderΦ. 10−5c2.

6.3 Effective Convergence

6.3.1 Definition and Derivation

In the thin-lens approximation, convergenceκ and deflection angle~α are related by

κ(~θ) =
1
2

∇θ ·~α(~θ) =
1
2

∂αi(~θ)
∂θi

, (260)

where summation overi is implied. In exact analogy, an effective convergenceκeff(w) can be defined for
cosmological weak lensing,

κeff(~θ,w) =
1
2

∇θ ·~α(~θ,w)

=
1
c2

∫ w

0
dw′

fK(w−w′) fK(w′)
fK(w)

∂2

∂xi∂xi
Φ[ fK(w′)~θ,w′] . (261)

Had we not replaced~x(~θ,w′) by fK(w′)~θ following eq. (256), eq. (261) would have contained second
and higher-order terms in the potential derivatives. Since eq. (256) is a Volterra integral equation of the
second kind, its solution (and derivatives thereof) can be expanded in a series, of which the foregoing
expression forκeff is the first term. Equation (263) below shows that this term is of the order of the line-of-
sight average of the density contrastδ. The next higher-order term, explicitly written down in the Appendix
of Schneider et al. (1998a), is determined by the productδ(w′)δ(w′′), averaged along the line-of-sight over
w′ < w′′. Analogous estimates apply to higher-order terms. Whereas the density contrast may be large for
individual density perturbations passed by a light ray, the average ofδ is small compared to unity for most
rays, henceκeff� 1, and higher-order terms are accordingly negligible.

The effective convergenceκeff in eq. (261) involves the two-dimensional Laplacian of the potential. We
can augment it by(∂2Φ/∂x2

3) which involves only derivatives along the light path, because these average
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to zero in the limit to which we are working; the validity of this approximation has been verified with
numerical simulations by White & Hu (2000). The three-dimensional Laplacian of the potential can then
be replaced by the density contrast via Poisson’s equation (65, page 20),

∆Φ =
3H2

0Ω0

2a
δ . (262)

Hence, we find for the effective convergence,

κeff(~θ,w) =
3H2

0Ω0

2c2

∫ w

0
dw′

fK(w′) fK(w−w′)
fK(w)

δ[ fK(w′)~θ,w′]
a(w′)

. (263)

The effective convergence along a light ray is therefore an integral over the density contrast along the
(unperturbed) light path, weighted by a combination of comoving angular-diameter distance factors, and
the scale factora. The amplitude ofκeff is proportional to the cosmic density parameterΩ0.

Expression (263) gives the effective convergence for a fixed source redshift corresponding to the co-
moving source distancew. When the sources are distributed in comoving distance,κeff(~θ,w) needs to be
averaged over the (normalised) source-distance distributionG(w),

κ̄eff(~θ) =
∫ wH

0
dwG(w)κeff(~θ,w) , (264)

whereG(w)dw = pz(z)dz. Suitably re-arranging the integration limits, we can then write the source-
distance weighted effective convergence as

κ̄eff(~θ) =
3H2

0Ω0

2c2

∫ wH

0
dwW̄(w) fK(w)

δ[ fK(w)~θ,w]
a(w)

, (265)

where the weighting function̄W(w) is now

W̄(w)≡
∫ wH

w
dw′G(w′)

fK(w′−w)
fK(w′)

. (266)

The upper integration boundarywH is the horizon distance, defined as the comoving distance obtained for
infinite redshift. In fact, it is easily shown that the effective convergence can be written as

κeff =
∫

dz
4πG
c2

DdDds

Ds

dDprop

dz
(ρ− ρ̄) , (267)

and the weighting function̄W is the distance ratio〈Dds/Ds〉, averaged over the source distances at fixed
lens distance. Naively generalising the definition of the dimension-less surface-mass density (91, page 31)
to a three-dimensional matter distribution would therefore directly have led to the cosmologically correct
expression for the effective convergence.

6.4 Effective-Convergence Power Spectrum

6.4.1 The Power Spectrum from Limber’s Equation

Here, we are interested in the statistical properties of the effective convergenceκeff, especially its power
spectrumPκ(l). We refer the reader to Sect. 2.4 (page 26) for the definition of the power spectrum. We also
note that the expression for̄κeff(~θ) is of the form (77, page 27), and so the power spectrumPκ(l) is given
in terms ofPδ(k) by eq. (84, page 28), if one sets

q1(w) = q2(w) =
3
2

H2
0

c2 Ω0W̄(w)
fK(w)
a(w)

. (268)

We therefore obtain

Pκ(l) =
9H4

0Ω2
0

4c4

∫ wH

0
dw

W̄2(w)
a2(w)

Pδ

(
l

fK(w)
,w

)
, (269)
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with the weighting functionW̄ given in eq. (266). This power spectrum is the central quantity for the
discussion in the remainder of this chapter.

Figure 15 showsPκ(l) for five different realisations of the CDM cosmogony. These are the four models
whose parameters are detailed in Tab. 1, all with non-linearly evolving density power spectrumPδ, using
the prescription of Peacock & Dodds (1996), plus the SCDM model with linearly evolvingPδ. Sources
are assumed to be at redshiftzs = 1. Curves 1 and 2 (solid and dotted; SCDM with linear and non-
linear evolution, respectively) illustrate the impact of non-linear density evolution in an Einstein-de Sitter
universe with cluster-normalised density fluctuations. Non-linear effects set in on angular scales below
a few times 10′, and increase the amplitude ofPκ(l) by more than an order of magnitude on scales of
≈ 1′. Curve 3 (short-dashed;σCDM), obtained for CDM normalised toσ8 = 1 rather than the cluster
abundance, demonstrates the potential influence of different choices for the power-spectrum normalisation.
Curves 4 and 5 (dashed-dotted and long-dashed; OCDM andΛCDM, respectively) showPκ(l) for cluster-
normalised CDM in an open universe (Ω0 = 0.3, ΩΛ = 0) and in a spatially flat, low-density universe
(Ω0 = 0.3, ΩΛ = 0.7). It is a consequence of the normalisation to the local cluster abundance that the
variousPκ(l) are very similar for the different cosmologies on angular scales of a few arc minutes. For the
low-density universes, the difference between the cluster- and theσ8 normalisation is substantially smaller
than for the Einstein-de Sitter model.

Figure 15: Five effective-convergence power spectraPκ(l) are shown as functions of the angular scale
2πl−1, expressed in arc minutes. All sources were assumed to lie atzs = 1. The five curves represent the
four realisations of the CDM cosmogony listed in Tab. 1, all with non-linearly evolving density-perturbation
power spectraPδ, plus the SCDM model with linearly evolvingPδ. Solid curve (1): Linearly evolving
SCDM model; dotted curve (2): non-linearly evolving SCDM; short-dashed curve (3): non-linearly evolv-
ing σCDM; dashed-dotted and long-dashed curves (4 and 5): non-linearly evolving OCDM andΛCDM,
respectively.

Figure 16 gives another representation of the curves in Fig. 15. There, we plotl2Pκ(l), i.e. the total
power in the effective convergence per logarithmicl interval. This representation demonstrates that density
fluctuations on angular scales smaller than≈ 10′ contribute most strongly to weak gravitational lensing
by large-scale structures. On angular scales smaller than≈ 1′, the curves level off and then decrease very
gradually. The solid curve in Fig 16 shows that, when linear density evolution is assumed, most power is
contributed by structures on scales above 10′, emphasising that it is crucial to take non-linear evolution into
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account to avoid misleading conclusions.

Figure 16: Different representation of the curves in Fig. 15. We plot herel2Pκ(l), representing the total
power in the effective convergence per logarithmicl interval. See the caption of Fig. 15 for the meaning
of the different line types. The figure demonstrates that the total power increases monotonically towards
small angular scales when non-linear evolution is taken into account (i.e. with the exception of the solid
curve). On angular scales still smaller than≈ 1′, the curves level off and decrease very slowly. This shows
that weak lensing by cosmological mass distributions is mostly sensitive to structures smaller than≈ 10′.

6.4.2 Special Cases

In the approximation of linear density evolution, applicable on large angular scales& 30′, the density
contrast grows in proportion withag(a), as described following eq. (52) on page 16. The power spectrum
of the density contrast then evolves∝ a2g2(a). Inserting this into eq. (269), the squared scale factora2(w)
cancels, and we find

Pκ(l) =
9H4

0Ω2
0

4c4

∫ wH

0
dwg2[a(w)]W̄2(w)P0

δ

(
l

fK(w)

)
. (270)

Here,P0
δ (k) is the density-contrast power spectrum linearly extrapolated to the present epoch.

In an Einstein-de Sitter universe, the growth functiong(a) is unity sincePδ grows like the squared scale
factor. In that special case, the expression for the power spectrum ofκ̄eff further reduces to

Pκ(l) =
9H4

0

4c4

∫ wH

0
dwW̄2(w)P0

δ

(
l
w

)
, (271)

and the weight function̄W simplifies to

W̄(w) =
∫ wH

w
dw′G(w′)

(
1− w

w′

)
. (272)

In some situations, the distance distribution of the sources can be approximated by a delta peak at some
distancews, G(w) = δD(w−ws). A typical example is weak lensing of the Cosmic Microwave Background,
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where the source is the surface of last scattering at redshiftzs≈ 1000. Under such circumstances,

W̄(w) =
(

1− w
ws

)
H(ws−w) , (273)

where the Heaviside step function H(x) expresses the fact that sources atws are only lensed by mass
distributions at smaller distancew. For this specific case, the effective-convergence power spectrum reads

Pκ(l) =
9H4

0

4c4 ws

∫ 1

0
dy(1−y)2P0

δ

(
l

wsy

)
, (274)

wherey = w/ws is the distance ratio between lenses and sources. This equation illustrates that all density-
perturbation modes whose wave numbers are larger thankmin = w−1

s l contribute toPκ(l), or whose wave-
lengths are smaller thanλmax = wsθ. For example, the power spectrum of weak lensing on angular scales
of θ≈ 10′ on sources at redshiftszs≈ 2 originates from all density perturbations smaller than≈ 7h−1Mpc.
This result immediately illustrates the limitations of the foregoing approximations. Density perturbations
on scales smaller than a few Mpc become non-linear even at moderate redshifts, and the assumption of
linear evolution breaks down.

6.5 Magnification and Shear

In analogy to the Jacobian matrixA of the conventional lens equation (95, page 31), we now form the
matrix

A(~θ,w) = I − ∂~α(~θ,w)

∂~θ
=

1
fK(w)

∂~x(~θ,w)

∂~θ
. (275)

The magnification is the inverse of the determinant ofA (see eq. 98, page 32). To first order in the pertur-
bations, we obtain for the magnification of a source at distancew seen in direction~θ

µ(~θ,w) =
1

detA(~θ,w)
≈ 1+ ∇θ ·~α(~θ,w) = 1+2κeff(~θ,w)

≡ 1+ δµ(~θ,w) . (276)

In the weak-lensing approximation, the magnification fluctuationδµ is simply twice the effective conver-
genceκeff, just as in the thin-lens approximation.

We emphasise again that the approximations made imply that the matrixA is symmetric. In general,
when higher-order terms in the Newtonian potential are considered,A attains an asymmetric contribution.
Jain et al. (2000) used ray-tracing simulations through the density distribution of the Universe computed in
very high resolutionN-body simulations to show that the symmetry ofA is satisfied to very high accuracy.
Only for those light rays which happen to propagate close to more than one strong deflector can the devi-
ation from symmetry be appreciable. Further estimates of the validity of the various approximations have
been carried out analytically by Bernardeau et al. (1997) and Schneider et al. (1998a).

Therefore, as in the single lens-plane situation, the anisotropic deformation, or shear, of a light bundle
is determined by the trace-free part of the matrixA (cf. eq. 95, page 31). As explained there, the shear
makes elliptical images from circular sources. Leta andb be the major and minor axes of the image ellipse
of a circular source, respectively, then the ellipticity is

|χ|= a2−b2

a2 +b2 ≈ 2|γ| , (277)

where the latter approximation is valid for weak lensing,|γ| � 1; cf. eq. (141). The quantity 2γ was
sometimes calledpolarisationin the literature (Blandford et al. 1991, Miralda-Escudé 1991, Kaiser 1992).

In the limit of weak lensing which is relevant here, the two-point statistical properties ofδµ and of
2γ are identical (e.g. Blandford et al. 1991). To see this, we first note that the first derivatives of the
deflection angle occurring in eqs. (276) can be written as second derivatives of an effective deflection
potentialψ which is defined in terms of the effective surface mass densityκeff in the same way as in
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the single lens-plane case; see (93, page 31). We then imagine thatδµ and γ are Fourier transformed,
whereupon the derivatives with respect toθi are replaced by multiplications with components of the wave
vector~l conjugate to~θ. In Fourier space, the expressions for the averaged quantities〈δµ2〉 and 4〈|γ|2〉
differ only by the combinations ofl1 andl2 which appear under the average. We have(

l2
1 + l2

2

)2 = |~l |4 for 〈δµ2〉(
l2
1− l2

2

)2 +4l2
1l2

2 = |~l |4 for 4〈|γ|2〉= 4〈γ2
1 + γ2

2〉
, (278)

and hence the two-point statistical properties ofδµ and 2γ agree identically. Therefore, the power spectra
of effective convergence and shear agree,

〈κ̂eff(~l)κ̂∗eff(~l
′)〉= 〈γ̂(~l)γ̂∗(~l ′)〉 ⇒ Pκ(l) = Pγ(l) . (279)

Thus we can concentrate on the statistics of either the magnification fluctuations or the shear only. Since
δµ = 2κeff, the magnification power spectrumPµ is 4Pκ, and we can immediately employ the convergence
power spectrumPκ.

6.6 Second-Order Statistical Measures

We aim at the statistical properties of the magnification fluctuation and the shear. In particular, we are
interested in the amplitude of these quantities and their angular coherence. Both can be described by their
angular auto-correlation functions, or other second-order statistical measures that will turn out to be more
practical later. As long as the density fluctuation fieldδ remains Gaussian, the probability distributions
of δµ andγ are also Gaussians with mean zero, and two-point statistical measures are sufficient for their
complete statistical description. When non-linear evolution of the density contrast sets in, non-Gaussianity
develops, and higher-order statistical measures become important.

6.6.1 Angular Auto-Correlation Function

The angular autocorrelation functionξq(φ) of some isotropic quantityq(~θ) is the Fourier transform of the
power spectrumPq(l) of q(~θ). In particular, the auto-correlation function of the magnification fluctuation,
ξµ(φ), is related to the effective-convergence power spectrumPκ(l) through

ξµ(φ) = 〈δµ(~θ)δµ(~θ +~φ)〉= 4〈κeff(~θ)κeff(~θ +~φ)〉= 4〈γ(~θ)γ∗(~θ +~φ)〉

= 4
∫

d2l
(2π)2 Pκ(l) exp(−i~l ·~φ) = 4

∫ ∞

0

ldl
2π

Pκ(l) J0(lφ) , (280)

where~φ is a vector with normφ. The factor four in front of the integral accounts for the fact thatδµ= 2κeff

in the weak-lensing approximation. For the last equality in (280), we integrated over the angle enclosed
by ~l and~φ, leading to the zeroth-order Bessel function of the first kind, J0(x). Equation (280) shows
that the magnification (or shear) auto-correlation function is an integral over the power spectrum of the
effective convergenceκeff, filtered by the Bessel function J0(x). Since the latter is a broad-band filter, the
magnification auto-correlation function is not well suited for extracting information onPκ. It would be
desirable to replaceξµ(φ) by another measurable quantity which involves a narrow-band filter.

Nonetheless, inserting eq. (269) into eq. (280), we obtain the expression for the magnification auto-
correlation function,

ξµ(φ) = 9H4
0Ω2

0
c4

∫ wH

0
dw f2

K(w)W̄2(w,w)a−2(w)

×
∫ ∞

0

kdk
2π

Pδ(k,w) J0[ fK(w)kφ] . (281)

The magnification autocorrelation function therefore turns out to be an integral over the density-fluctuation
power spectrum weighted by ak–space window function which selects the contributing density perturbation
modes.
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The correlation function of the image ellipticity (or the shear) is then〈εε∗〉(φ) = ξγ(φ) = ξµ(φ)/4. Since
the ellipticity has two components, one can define and calculate the corresponding correlations functions
as well: Any pair of galaxy images defines the directionϕ of their separation vector. With respect to
this direction, one can define in complete analogy to (238) the tangential and cross-components of the
ellipticities,εt andε× =−ℑ(εexp(−2iϕ)), respectively. One then finds (Kaiser 1992) that(

〈εtεt〉(φ)
〈ε×ε×〉(φ)

)
=

1
2

∫ ∞

0

ldl
2π

Pκ(l)
(

J0(lφ)+J4(lφ)
J0(lφ)−J4(lφ)

)
, (282)

and〈εtε×〉(φ) = 0. The latter expression can be used to estimate systematic errors on a given data set from
which the correlation functions are calculated.

6.6.2 Special Cases and Qualitative Expectations

In order to gain some insight into the expected behaviour of the magnification auto-correlation function
ξµ(φ), we now make a number of simplifying assumptions. Let us first specialise to linear density evolution
in an Einstein-de Sitter universe, and assume sources are at a single distancews. Equation (281) then
immediately simplifies to

ξµ(φ) =
9H4

0

c4 w3
s

∫ 1

0
dyy2(1−y)2

∫ ∞

0

kdk
2π

P0
δ (k)J0(wykφ) , (283)

with y≡ w−1
s w.

We now introduce two model spectraP0
δ (k), one of which has an exponential cut-off above some wave

numberk0, while the other falls off likek−3 for k> k0. For smallk, both spectra increase likek. They
approximately describe two extreme cases of popular cosmogonies, the HDM and the CDM model. We
choose the functional forms

P0
δ,HDM = Akexp

(
− k

k0

)
, P0

δ,CDM = Ak
9k4

0

(k2 +3k2
0)2

, (284)

whereA is the normalising amplitude of the power spectra. The numerical coefficients in the CDM model
spectrum are chosen such that both spectra peak at the same wave numberk = k0. Inserting these model
spectra into eq. (283), performing thek integration, and expanding the result in a power series inφ, we
obtain (Bartelmann 1995b)

ξµ,HDM(φ) =
3A′

10π
(wsk0)3− 9A′

35π
(wsk0)5 φ2 + O(φ4) ,

ξµ,CDM(φ) =
9
√

3A′

80
(wsk0)3− 27A′

40π
(wsk0)4 φ + O(φ2) , (285)

whereA′ = (H0c−1)4A. We see from eq. (285) that the magnification correlation function for the HDM
spectrum is flat to first order inφ, while it decreases linearly withφ for the CDM spectrum. This demon-
strates that the shape of the magnification autocorrelation functionξµ(φ) reflects the shape of the dark-
matter power spectrum. Motivated by the result of a large number of cosmological studies showing that
HDM models have the severe problem of structure on small scales forming at times much later than ob-
served (see e.g. Peacock 1999), we now neglect the HDM model and focus on the CDM power spectrum
only.

We can then expectξµ(φ) to increase linearly withφ asφ goes to zero. Although we assumed linear
evolution of the power spectrum to achieve this result, this qualitative behaviour remains valid when non-
linear evolution is assumed, because for large wave numbersk, the non-linear CDM power spectra also
asymptotically fall off∝ k−3 for largek.

Although the model spectra (284) are of limited validity, we can extract some useful information from
the small-angle approximations given in eq. (285). First, the correlation amplitudeξµ(0) scales with the
comoving distance to the sourcesws asw3

s. In the Einstein-de Sitter case, for which eq. (285) was derived,
ws = (2c/H0) [1− (1+ zs)−1/2]. For low source redshifts,zs� 1, ws ≈ (c/H0)zs, so thatξµ(0) ∝ z3

s.
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For zs� 1, ws→ (2c/H0), andξµ(0) becomes independent of source redshift. For intermediate source
redshifts, progress can be made by definingζs≡ ln(zs) and expanding lnw[exp(ζs)] in a power series inζs.
The result is an approximate power-law expression,w(zs) ∝ zε

s, valid in the vicinity of the zero point of the
expansion. The exponentε changes from≈ 0.6 atzs≈ 1 to≈ 0.38 atzs≈ 3.

Second, typical source distances are of order 2Gpc. Sincek0 is the wave number corresponding
to the horizon size when relativistic and non-relativistic matter had equal densities,k−1

0 = dH(aeq) ≈
12(Ω0h2)−1Mpc. Therefore,wsk0 ≈ 150. Typically, the spectral amplitudeA′ ranges between 10−8–
10−9. A rough estimate for the correlation amplitudeξµ(0) thus ranges between 10−2–10−3 for ‘typical’
source redshiftszs& 1.

Third, an estimate for the angular scaleφ0 of the magnification correlation is obtained by determining
the angle whereξµ(φ) has dropped to half its maximum. From the small-angle approximation (285), we
find φ0 = π

√
3(12wsk0)−1. Inserting as beforewsk0≈ 150, we obtainφ0≈ 10′, decreasingwith increasing

source redshift.
Summarising, we expectξµ(φ) in a CDM universe to

1. start at 10−2–10−3 at φ = 0 for source redshiftszs∼ 1;

2. decrease linearly for smallφ on an angular scale ofφ0≈ 10′; and

3. increase with source redshift roughly as∝ z0.6
s aroundzs = 1.

6.6.3 Realistic Cases

After this digression, we now return to realistic CDM power spectra normalised to fit observational con-
straints. Some representative results are shown in Fig. 17 for the model parameter sets listed in Tab. 1.

Figure 17: Four pairs of magnification auto-correlation functions are shown for the cosmological model
parameter sets listed in Tab. 1, and for an assumed source redshiftzs = 1. For each pair, plotted with
the same line type, the curve with lower amplitude at small angular scale was calculated assuming linear,
and the other one non-linear density evolution. Solid curves: SCDM; dotted curves:σCDM; short-dashed

curve: OCDM; and long-dashed curve:ΛCDM. Non-linear evolution increases the amplitude ofξ1/2
µ (φ)

on small angular scales by factors of three to four. The results for the cluster-normalised models differ

fairly little. At φ ≈ 1′, ξ1/2
µ (φ) ≈ 6% for non-linear density evolution. For the Einstein-de Sitter models,

the difference between cluster- andσ8 = 1 normalisation amounts to about a factor of two inξ1/2
µ (φ).

The figure shows that typical values forξ1/2
µ (φ) in cluster-normalised CDM models with non-linear

density evolution are≈ 6% atφ ≈ 1′, quite independent of the cosmological model. The effects of non-

linear evolution are considerable. Non-linear evolution increases theξ1/2
µ by factors of three to four. The
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uncertainty in the normalisation is illustrated by the two curves for the Einstein-de Sitter model, one of
which was calculated with the cluster-, the other one with theσ8 = 1 normalisation, which yields about a

factor of two larger results forξ1/2
µ . For the other cosmological models (OCDM andΛCDM), the effects

of different normalisations (cluster vs. COBE) are substantially smaller.

6.6.4 Application: Magnification Fluctuations

At zero lag, the magnification autocorrelation function reads

ξµ(0) =
〈[

µ(~θ)−1
]2
〉
≡
〈
δµ2〉 , (286)

which is the variance of the magnification fluctuationδµ. Consequently, thermsmagnification fluctuation
is

δµrms =
〈
δµ2〉1/2

= ξ1/2
µ (0) . (287)

Figure 18 showsδµrms as a function of source redshift for four different realisations of the CDM cos-
mogony. For cluster-normalised CDM models, thermsmagnification fluctuation is of orderδµrms≈ 20%
for sources atzs≈ 2, and increases toδµrms≈ 25% forzs≈ 3. The strongest effect occurs for open CDM
(OCDM) because there non-linear evolution sets in at the highest redshifts.

Figure 18: Therms magnification fluctuationδµrms is shown as a function of source redshiftzs for non-
linearly evolving density fluctuations in the four different realisations of the CDM cosmogony detailed in
Tab. 1. Solid curve: SCDM; dotted curve:σCDM; short-dashed curve: OCDM; and long-dashed curve:
ΛCDM. Except for theσCDM model, typicalrmsmagnification fluctuations are of order 20% atzs = 2,
and 25% forzs = 3.

The results shown in Fig. 18 indicate that for any cosmological source, gravitational lensing causes a
statistical uncertainty of its brightness. In magnitudes, a typical effect atzs≈ 2 isδm≈ 2.5× log(1.2)≈ 0.2.
This can be important for e.g. high-redshift supernovae of type Ia, which are used as cosmological standard
candles. Their intrinsic magnitude scatter is of orderδm≈ 0.1−0.2 magnitudes (e.g. Phillips 1993; Riess
et al. 1995, 1996; Hamuy et al. 1996). Therefore, the lensing-induced brightness fluctuation is comparable
to the intrinsic uncertainty at redshiftszs& 2 (Frieman 1997; Wambsganss et al. 1997; Holz 1998; Metcalf
& Silk 1999).

Since the magnification probability can be highly skewed, themost probableobserved flux of a high-
redshift supernova can deviate from themeanflux at given redshift, even if the intrinsic luminosity dis-
tribution is symmetric. This means that particular care needs to be taken in the analysis of future large
SN surveys. However, if SNe Ia are quasi standard candles also at high redshifts, with an intrinsic scatter
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of ∆L = 4πD2
lum(z)∆S(z) around the mean luminosityL0 = 4πD2

lum(z)S0(z), then it is possible to obtain
volume-limited samples(in contrast to flux-limited samples) of them.

If, for a given redshift, the sensitivity limit is chosen to beSmin . µmin (S0− 3∆S), one can be sure
to find all SNe Ia at the redshift considered. Here,µmin is the minimum magnification of a source at the
considered redshift. Since no source can be more de-magnified than one that is placed behind a hypothetical
empty cone (see Dyer & Roder 1973 and the discussion in Sect. 4.5 of Schneider et al. 1992),µmin is not
much smaller than unity. Flux conservation (e.g. Weinberg 1976) implies that the mean magnification
of all sources at given redshift is unity,〈µ(z)〉 = 1, and so the expectation value of the observed flux at
given redshift is the unlensed flux,〈S(z)〉 = S0(z). It should be pointed out here that a similar relation
for the magnitudes doesnot hold, since magnitude is a logarithmic measure of the flux, and so〈m(z)〉 6=
m0(z). This led to some confusing conclusions in the literature claiming that lensing introduces a bias in
cosmological parameter estimates from lensing, but this is not true: One just has to work in terms of fluxes
rather than magnitudes.

However, a broad magnification probability distribution increases the confidence contours forΩ0 and
ΩΛ (e.g. Holz 1998). If the probability distribution was known, more sensitive estimators of the cosmologi-
cal model than the mean flux at given redshift could be constructed. Furthermore, if the intrinsic luminosity
distribution of the SNe was known, the normalisation of the power spectrum as a function ofΩ0 andΩΛ
could be inferred from the broadened observed flux distribution (Metcalf 1999). If part of the dark mat-
ter is in the form of compact objects with mass& 10−2M�, these objects can individually magnify a SN
(Schneider & Wagoner 1987), additionally broadening the magnification probability distribution and thus
enabling the nature of dark matter to be tested through SN observations (Metcalf & Silk 1999, Seljak &
Holz 1999).

6.6.5 Shear in Apertures

We mentioned below eq. (280) that measures of cosmic magnification or shear other than the angular auto-
correlation function which filter the effective-convergence power spectrumPκ with a function narrower
than the Bessel function J0(x) would be desirable. In practice, a convenient measure would be the variance
of the effective convergence within a circular aperture of radiusθ. Within such an aperture, the averaged
effective convergence and shear are

κav(θ) =
∫ θ

0

d2φ
πθ2 κ̄eff(~φ) , γav(θ) =

∫ θ

0

d2φ
πθ2 γ(~φ) , (288)

and their variance is

〈κ2
av〉(θ) =

∫ θ

0

d2φ
πθ2

∫ θ

0

d2φ′

πθ2

〈
κ̄eff(~φ)κ̄eff(~φ′)

〉
= 〈|γav|2〉(θ) . (289)

The remaining average is the effective-convergence auto-correlation functionξκ(|~φ−~φ′|), which can be
expressed in terms of the power spectrumPκ. The final equality follows fromξκ = ξγ. Inserting (289) and
performing the angular integrals yields

〈κ2
av〉(θ) = 2π

∫ ∞

0
ldl Pκ(l)

[
J1(lθ)

πlθ

]2

= 〈|γav|2〉(θ) , (290)

where J1(x) is the first-order Bessel function of the first kind. Results for therms shear in apertures of
varying size are shown in Fig. 19 (cf. Blandford et al. 1991, Kaiser 1992, Jain & Seljak 1997).

6.6.6 Aperture Mass

Another measure for the effects of weak lensing, theaperture mass Map(θ) (cf. Sect. 5.3.1), was introduced
for cosmic shear by Schneider et al. (1998a) as

Map(θ) =
∫ θ

0
d2φU(φ) κ̄eff(~φ) , (291)
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Figure 19: Thermsshearγrms(θ) in circular apertures of radiusθ is plotted as a function ofθ for the four
different realisations of the CDM cosmogony detailed in Tab. 1, where all sources are assumed to be at
redshiftzs = 1. A pair of curves is plotted for each realisation, where for each pair the curve with lower
amplitude at smallθ is for linearly, the other one for non-linearly evolving density fluctuations. Solid
curves: SCDM; dotted curves:σCDM; short-dashed curves: OCDM; and long-dashed curves:ΛCDM.
For the cluster-normalised models, typicalrms shear values are≈ 3% for θ ≈ 1′. Non-linear evolution
increases the amplitude by about a factor of two atθ≈ 1′ over linear evolution.

where the weight functionU(φ) satisfies the criterion∫ θ

0
φdφU(φ) = 0 . (292)

In other words,U(φ) is taken to be acompensatedradial weight function across the aperture. For such
weight functions, the aperture mass can be expressed in terms of the tangential component of the observable
shear relative to the aperture centre,

Map(θ) =
∫ θ

0
d2φQ(φ)γt(~φ) , (293)

whereQ(φ) is related toU(φ) by (231).Map is a scalar quantity directly measurable in terms of the shear.
The variance ofMap reads

〈M2
ap〉(θ) = 2π

∫ ∞

0
ldl Pκ(l)

[∫ θ

0
φdφU(φ) J0(lφ)

]2

. (294)

Equations (290) and (294) provide alternative observable quantities which are related to the effective-
convergence power spectrumPκ through narrower filters than the auto-correlation functionξκ. TheMap

statistic in particular permits one to tune the filter function through different choices ofU(φ) within the
constraint (292). It is important thatMap can also be expressed in terms of the shear [see eq. (234, page 65)],
so thatMap can directly be obtained from the observed galaxy ellipticities.

Schneider et al. (1998a) suggested a family of radial filter functionsU(φ), the simplest of which is

U(φ) =
9

πθ2 (1−x2)
(

1
3
−x2

)
, Q(φ) =

6
πθ2 x2 (1−x2) , (295)

wherexθ = φ. With this choice, the variance〈M2
ap〉(θ) becomes

〈M2
ap〉(θ) = 2π

∫ ∞

0
ldl Pκ(l)J2(lθ) , (296)
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with the filter function

J(η) =
12

πη2 J4(η) , (297)

where J4(η) is the fourth-order Bessel function of the first kind. Examples for therms aperture mass,
Map,rms(θ) = 〈M2

ap〉1/2(θ), are shown in Fig. 20.

Figure 20: Therms aperture mass,Map,rms(θ), is shown in dependence of aperture radiusθ for the four
different realisations of the CDM cosmogony detailed in Tab. 1 where all sources are assumed to be at
redshiftzs = 1. For each realisation, a pair of curves is plotted; one curve with lower amplitude for linear,
and the second curve for non-linear density evolution. Solid curves: SCDM; dotted curves:σCDM; short-
dashed curves: OCDM; and long-dashed curves:ΛCDM. Non-linear evolution has a pronounced effect:
The amplitude is approximately doubled, and the peak shifts from degree- to arc-minute scales.

The curves look substantially different from those shown in Figs. 17 and 19. Unlike there, the aperture
mass does not increase monotonically asθ→ 0, but reaches a maximum at finiteθ and drops for smaller
angles. When non-linear evolution of the density fluctuations is assumed, the maximum occurs at much
smallerθ than for linear evolution: Linear evolution predicts the peak at angles of order one degree, non-
linear evolution around 1′ ! The amplitude ofMap,rms(θ) reaches≈ 1% for cluster-normalised models,
quite independent of the cosmological parameters.

Some insight into the expected amplitude and shape of〈M2
ap〉(θ) can be gained by noting thatJ2(η) is

well approximated by a Gaussian,

J2(η)≈ A exp

[
− (η−η0)2

2σ2

]
, (298)

with meanη0 ≈ 4.11, amplitudeA≈ 4.52×10−3, and widthσ ≈ 1.24. At aperture radii ofθ ≈ 1′, the
peakη0≈ 4.11 corresponds to angular scales of 2πl−1≈ 1.6′, where the total powerl2Pκ(l) in the effective
convergence is close to its broad maximum (cf. Fig. 16). The filter functionJ2(η) is therefore fairly narrow.
Its relative width corresponds to anl range ofδl/l ≈ σ/η0 ∼ 0.3. Thus, the contributing range of modesl
in the integral (296) is very small. Crudely approximating the Gaussian by a delta distribution,

J2(η)≈ A
√

2πσδD(η−η0) , (299)

we are led to

〈M2
ap〉 ≈ 〈M̃2

ap〉 ≡
(2π)3/2Aσ

η0

(η0

θ

)2
Pκ

(η0

θ

)
≈ 2.15×10−2 l2

0Pκ(l0) , (300)
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with l0≡ η0θ−1. Hence, the mean-square aperture mass is expected to directly yield the total power in the
effective-convergence power spectrum, scaled down by a factor of≈ 2.15×10−2. We saw in Fig. 16 that
l2Pκ(l)≈ 3×10−3 for 2πl−1≈ 1′ in cluster-normalised CDM models, so that

〈M2
ap〉1/2≈ 0.8% at θ≈ 1′ (301)

for sources at redshift unity. We compareMap,rms(θ) and the approximatioñMap,rms(θ) in Fig. 21. Obvi-
ously, the approximation is excellent forθ & 10′, but even for smaller aperture radii of∼ 1′ the relative
deviation is less than≈ 5%. At this point, the prime virtue of the narrow filter functionJ(η) shows up most
prominently. Up to relatively small errors of a few per cent, thermsaperture mass very accurately reflects
the effective-convergence power spectrumPκ(l). Observations ofMap,rms(θ) are therefore most suitable to
obtain information on the matter power spectrum (cf. Bartelmann & Schneider 1999).

Figure 21: Therms aperture massMap,rms(θ) is shown together with the approximatioñMap,rms(θ) of
eq. (300). The three curves correspond to the three cluster-normalised cosmological models (SCDM,
OCDM andΛCDM) introduced in Tab. 1 for non-linearly evolving matter perturbations. All sources were
assumed to be at redshiftzs = 1. Clearly, thermsaperture mass is very accurately approximated byM̃ap,rms

on angular scalesθ& 10′, and even for smaller aperture sizes of order∼ 1′ the deviation between the curves
is smaller than≈ 5%. The observablermsaperture mass therefore provides a very direct measure for the
effective-convergence power spectrumPκ(l).

6.6.7 Power Spectrum and Filter Functions

The three statistical measures discussed above, the magnification (or, equivalently, the shear) auto-
correlation functionξµ, the mean-square shear in apertures〈γ2〉, and the mean-square aperture mass〈M2

ap〉,
are related to the effective-convergence power spectrumPκ in very similar ways. According to eqs. (280),
(290), and (296), they can all be written in the form

Q(θ) = 2π
∫ ∞

0
ldl Pκ(l)F(lθ) , (302)

where the filter functionsF(η) are given by

F(η) =



J0(η)
π2 for Q = ξµ[
J1(η)

πη

]2

for Q = 〈γ2
av〉[

12J4(η)
πη2

]2

for Q = 〈M2
ap〉

. (303)
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Figure 22: The three filter functionsF(η) defined in eq. (303) are shown as functions ofη = lθ. They
occur in the expressions for the magnification auto-correlation function,ξµ (solid curve), the mean-square
shear in apertures,〈γ2〉 (dotted curve), and the mean-square aperture mass,〈M2

ap〉 (dashed curve).

Figure 22 shows these three filter functions as functions ofη = lθ. Firstly, the curves illustrate that the
amplitude ofξµ is largest (owing to the factor of four relative to the definition ofξγ), and that of〈M2

ap〉 is
smallest because the amplitudes of the filter functions themselves decrease. Secondly, it becomes evident
that, for givenθ, the range ofl modes of the effective-convergence power spectrumPκ(l) convolved into the
weak-lensing estimator is largest forξµ and smallest for〈M2

ap〉. Thirdly, the envelope of the filter functions
for largeη decreases most slowly forξµ and most rapidly for〈M2

ap〉. Although the aperture mass has the
smallest signal amplitude, it is a much better probe for the effective-convergence power spectrumPκ(l)
than the other measures because it picks up the smallest range ofl modes and most strongly suppresses the
l modes smaller or larger than its peak location.

We can therefore conclude that, while the strongest weak-lensing signal is picked up by the magni-
fication auto-correlation functionξµ, the aperture mass is the weak-lensing estimator most suitable for
extracting information on the effective-convergence power spectrum.

6.6.8 Signal-to-Noise Estimate of Aperture-Mass Measurements

The question then arises whether the aperture mass can be measured with sufficient significance in upcom-
ing wide-field imaging surveys. In practice,Map is derived from observations of image distortions of faint
background galaxies, using eq. (234, page 65) and replacing the integral by a sum over galaxy ellipticities.
If we considerNap independent apertures withNi galaxies in thei-th aperture, an unbiased estimator of
〈M2

ap〉 is

M =
(πθ2)2

Nap

Nap

∑
i=1

1
Ni(Ni−1)

Ni

∑
j 6=k

Qi j Qikεt,i j εt,ik , (304)

whereQi j is the value of the weight function at the position of thej-th galaxy in thei-th aperture, andεt,i j

is defined accordingly.
The noise properties of this estimator were investigated in Schneider et al. (1998a). One source of

noise comes from the fact that galaxies are not intrinsically circular, but rather have an intrinsic ellipticity
distribution. A second contribution to the noise is due to the random galaxy positions, and a third one to
cosmic (or sampling) variance. Under the assumptions that the number of galaxiesNi in the apertures is
large,Ni� 1, it turns out that the second of these contributions can be neglected compared to the other two.
For this case, and assuming for simplicity that allNi are equal,Ni ≡ N, the signal-to-noise of the estimator
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M becomes

S
N
≡
〈M2

ap〉
σ(M )

= N1/2
ap

µ4 +

(
√

2+
6σ2

ε

5
√

2N〈M2
ap〉

)2
−1

, (305)

whereσε ≈ 0.2 (e.g. Hudson et al. 1998) is the dispersion of the intrinsic galaxy ellipticities, andµ4 =
〈M4

ap〉/〈M2
ap〉2− 3 is the curtosis ofMap, which vanishes for a Gaussian distribution. The two terms of

(305) in parentheses represent the noise contributions from Gaussian sampling variance and the intrinsic
ellipticity distribution, respectively, andµ4 accounts for sampling variance in excess of that for a Gaussian
distribution. On angular scales of a few arc minutes and smaller, the intrinsic ellipticities dominate the
noise, while the cosmic variance dominates on larger scales.

Another convenient and useful property of the aperture massMap follows from its filter function be-
ing narrow, namely thatMap is a well localised measure of cosmic weak lensing. This implies thatMap

measurements in neighbouring apertures are almost uncorrelated even if the aperture centres are very close
(Schneider et al. 1998a). It is therefore possible to gain a large number of (almost) independentMap mea-
surements from a single large data field by covering the field densely with apertures. This is a significant
advantage over the other two measures for weak lensing discussed above, whose broad filter functions
introduce considerable correlation between neighbouring measurements, implying that for their measure-
ment imaging data on widely separated fields are needed to ensure statistical independence. Therefore,
a meaningful strategy to measure cosmic shear consists in taking a large data field, covering it densely
with apertures of varying radiusθ, and determining〈M2

ap〉 in them via the ellipticities of galaxy images.
Figure 23 shows an example for the signal-to-noise ratio of such a measurement that can be expected as a
function of aperture radiusθ.

Figure 23: The signal-to-noise ratio S/N(θ) of measurements of mean-square aperture masses〈M2
ap〉 is

plotted as a function of aperture radiusθ for an experimental setup as described in the text. The curtosis
was set to zero here. The four curves are for the four different realisations of the CDM cosmogony listed
in Tab. 1. Solid curve: SCDM; dotted curve:σCDM; short-dashed curve: OCDM; and long-dashed curve:
ΛCDM. Quite independently of the cosmological parameters, the signal-to-noise ratio S/N reaches values
of > 10 on scales of≈ 1′−2′.

Computing the curves in Fig. 23, we assumed that a data field of size 5◦ × 5◦ is available which
is densely covered by apertures of radiusθ, hence the number of (almost) independent apertures is
Nap = (300′/2θ)2. The number density of galaxies was taken as 30arcmin−2, and the intrinsic elliptic-
ity dispersion was assumed to beσε = 0.2. Evidently, high signal-to-noise ratios of> 10 are reached on
angular scales of≈ 1′ in cluster-normalised universes quite independent of the cosmological parameters.
The decline of S/N for largeθ is due to the decreasing number of independent apertures on the data field,
whereas the decline for smallθ is due to the decrease of the signal〈M2

ap〉, as seen in Fig. 20. We also
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note that for calculating the curves in Fig. 23, we have putµ4 = 0. This is likely to be an overly opti-
mistic assumption for small angular scales where the density field is highly non-linear. Unfortunately,µ4

cannot easily be estimated analytically. It was numerically derived from ray-tracing throughN-body sim-
ulations of large-scale matter distributions by Reblinsky et al. (1999). The curtosis exceeds unity even on
scales as large as 10′, demonstrating the highly non-Gaussian nature of the non-linearly developed density
perturbations.

Although the aperture mass is a very convenient measure of cosmic shear and provides a localised
estimate of the projected power spectrumPκ(l) [see (300)], it is by no means clear that it is an optimal
measure for the projected power spectrum. Kaiser (1998) considered the case of a square-shaped data field
and employed the Fourier-transformed Kaiser & Squires inversion formula, eq. (210, page 58). The Fourier
transform of the shear is then replaced by a sum over galaxy ellipticitiesεi , so thatκ̂eff(~l) is expressed
directly in terms of theεi . The square|κ̂eff(~l)|2 yields an estimate for the power spectrum which allows
a simple determination of the noise coming from the intrinsic ellipticity distribution. As Kaiser (1998)
pointed out that, while this noise is very small for angular scales much smaller than the size of the data
field, the sampling variance is much larger, so that different sampling strategies should be explored. For
example, he suggests to use a sparse sampling strategy. Seljak (1998) developed an estimator for the power
spectrum which achieves minimum variance in the case of a Gaussian field. Since the power spectrum
Pκ(l) deviates significantly from its linear prediction on angular scales below one degree, one expects that
the field attains significant non-Gaussian features on smaller angular scales, so that this estimator does no
longer need to have minimum variance.

6.7 Higher-Order Statistical Measures

6.7.1 The Skewness

As the density perturbation fieldδ grows with time, it develops non-Gaussian features. In particular,δ is
bounded by−1 from below and unbounded from above, and therefore the distribution ofδ is progressively
skewed while evolution proceeds. The same then applies to quantities like the effective convergenceκeff

derived fromδ (cf. Jain & Seljak 1997; Bernardeau et al. 1997; Schneider et al. 1998a). Skewness of the
effective convergence can be quantified by means of the three-point correlator ofκeff. In order to compute
that, we use expression (265), Fourier transform it, and also express the density contrastδ in terms of its
Fourier transform. Additionally, we employ the same approximation used in deriving Limber’s equation in
Fourier space, namely that correlations of the density contrastalong the line-of-sight are negligibly small.
After carrying out this lengthy but straightforward procedure, the three-point correlator of the Fourier
transform ofκeff reads (suppressing the subscript ‘eff’ for brevity)

〈κ̂(~l1)κ̂(~l2)κ̂(~l3)〉 =
27H6

0Ω3
0

8c6

∫ wH

0
dw

W̄3(w)
a3(w) f 3

K(w)

∫ ∞

−∞

dk3

2π
exp(ik3w)

×

〈
δ̂

(
~l1

fK(w)
,k3

)
δ̂

(
~l2

fK(w)
,0

)
δ̂

(
~l3

fK(w)
,0

)〉
. (306)

Hats on symbols denote Fourier transforms. Note the fairly close analogy between (306) and (269): The
three-point correlator of̂κ is a distance-weighted integral over the three-point correlator of the Fourier-
transformed density contrastδ̂. The fact that the three-componentk3 of the wave vector~k appears only in
the first factorδ̂ reflects the approximation mentioned above, i.e. that correlations ofδ along the line-of-
sight are negligible.

Suppose now that the density contrastδ is expanded in a perturbation series,δ = ∑δ(i) such thatδ(i) =
O([δ(1)]i), and truncated after the second order. The three-point correlator ofδ̂(1) vanishes becauseδ
remains Gaussian to first perturbation order. The lowest-order, non-vanishing three-point correlator ofδ
can therefore symbolically be written〈δ̂(1)δ̂(1)δ̂(2)〉, plus two permutations of that expression. The second-
order density perturbation is related to the first order through (Fry 1984; Goroff et al. 1986; Bouchet et al.
1992)

δ̂(2)(~k,w) = D2
+(w)

∫
d3k′

(2π)3 δ̂(1)
0 (~k′)δ̂(1)

0 (~k−~k′)F(~k′,~k−~k′) , (307)
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whereδ(1)
0 is the first-order density perturbation linearly extrapolated to the present epoch, andD+(w) is

the linear growth factor,D+(w) = a(w)g[a(w)] with g(a) defined in eq. (52) on page 16. The function
F(~x,~y) is given by

F(~x,~y) =
5
7

+
1
2

(
1
|~x|2

+
1
|~y|2

)
~x ·~y+

2
7

(~x ·~y)2

|~x|2|~y|2
. (308)

Relation (307) implies that the lowest-order three-point correlator〈δ̂(1)δ̂(1)δ̂(2)〉 involves four-point correla-
tors ofδ̂(1). For Gaussian fields likeδ(1), four-point correlators can be decomposed into sums of products of
two-point correlators, which can be expressed in terms of the linearly extrapolated density power spectrum

P(0)
δ . This leads to

〈δ̂(1)(~k1)δ̂(1)(~k2)δ̂(2)(~k3)〉 = 2(2π)3D4
+(w)P(0)

δ (k1)P(0)
δ (k2)

× δD(~k1 +~k2 +~k3)F(~k1,~k2) . (309)

The complete lowest-order three-point correlator ofδ̂ is a sum of three terms, namely the left-hand side
of (309) and two permutations thereof. Each permutation yields the same result, so that the complete
correlator is three times the right-hand side of (309). We can now work our way back, inserting the three-
point density correlator into eq. (306) and Fourier-transforming the result with respect to~l1,2,3. The three-
point correlator of the effective convergence so obtained can then in a final step be used to compute the
third moment of the aperture mass. The result is (Schneider et al. 1998a)

〈M3
ap(θ)〉 =

81H6
0Ω3

0

8πc6

∫ wH

0
dw

W̄3(w)D4
+(w)

a3(w) fK(w)

×
∫

d2l1P(0)
δ

(
l1

fK(w)

)
J2(l1θ)

×
∫

d2l2P(0)
δ

(
l2

fK(w)

)
J2(l2θ)J2(|~l1 +~l2|θ)F(~l1,~l2) , (310)

with the filter functionJ(η) defined in eq. (297). Commonly, third-order moments are expressed in terms
of the skewness,

S(θ)≡
〈M3

ap(θ)〉
〈M2

ap(θ)〉2
, (311)

where〈M2
ap(θ)〉 is calculated with the linearly evolved power spectrum. As seen earlier in eq. (296),

〈M2
ap〉 scales with the amplitude of the power spectrum, while〈M3

ap〉 scales with the square of it. In this
approximation, the skewnessS(θ) is therefore independent of the normalisation of the power spectrum,
removing that major uncertainty and leaving cosmological parameters as primary degrees of freedom. For
instance, the skewnessS(θ) is expected to scale approximately withΩ−1

0 . Figure 24 shows three examples.
As expected, lower values ofΩ0 yield larger skewness, and the skewness is reduced whenΩΛ is in-

creased keepingΩ0 fixed. Despite the sensitivity ofS(θ) to the cosmological parameters, it should be noted
that the source redshift distribution [entering throughW̄(w)] needs to be known sufficiently well before at-
tempts can be made at constraining cosmological parameters through measurements of the aperture-mass
skewness. However, photometric redshift estimates are expected to produce sufficiently well-constrained
redshift distributions in the near future (Connolly et al. 1995; Gwyn & Hartwick 1996; Hogg et al. 1998).

We have confined the discussion of the skewness to the aperture mass sinceMap is a scalar measure of
the cosmic shear which can directly be expressed in terms of the observed image ellipticities. One can of
course also consider the skewness directly in terms ofκ, sinceκ can be obtained from the observed image
ellipticities through a mass reconstruction algorithm as described in Sect. 5. Analytical and numerical
results for this skewness have been presented in, e.g., Bernardeau et al. (1997), van Waerbeke et al. (1999b),
Jain et al. (2000) and Reblinsky et al. (1999). We shall discuss some of their results in Sect. 6.9.1.

As pointed out by Bernardeau (1998), the fact that the source galaxies are clustered in three-dimensional
space, and therefore also in redshift space, generates an additional contribution to the skewness. This effect
is more important than the contributions by the approximations made in the light propagation equations;
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Figure 24: The skewnessS(θ) of the aperture massMap(θ) is shown as a function of aperture radiusθ for
three of the realisations of the cluster-normalised CDM cosmogony listed in Tab. 1: SCDM (solid curve);
OCDM (dotted curve); andΛCDM (dashed curve). The source redshift was assumed to bezs = 1.

in fact, Bernardeau (1998) estimated that the skewness can change by∼ 25% due to source clustering.
Whereas the expectation values of second-order statistics of cosmic shear is unaffected by this clustering,
the dispersion of any estimator increases. Of course, if the redshifts of the source galaxies are known, these
effects can be avoided by suitably defining estimators for the quantities under consideration.

In the regime of small angular scales, where the relevant density contrast is highly nonlinear, different
approximations apply for calculating higher-order statistical quantities. One of them is based on the so-
called stable-clusteringansatz, which predicts a scaling relation for then-point correlation function of the
density contrast (Peebles 1980). Based on this assumption, and variants thereof, higher-order moments of
cosmic-shear measures can be derived (e.g., Hui 1999a, Munshi & Coles 2000, Munshi & Jain 1999a), as
well as approximations to the probability distribution forκeff itself and filtered (smoothed) versions thereof
(Valageas 2000b, Munshi & Jain 1999b, Valageas 2000a). The resulting expressions, when compared to
numerical simulations of light propagation through large-scale structures, are surprisingly accurate.

6.7.2 Number density of (dark) halos

In Sect. 5.3.1, we discussed the possibility to detect mass concentrations by their weak lensing effects on
background galaxies by means of the aperture mass. The number density of mass concentrations that can
be detected at a given threshold ofMap depends on the cosmological model. Fixing the normalisation of
the power spectrum so that the the local abundance of massive clusters is reproduced, the evolution of the
density field proceeds differently in different cosmologies, and so the abundances will differ at redshifts
z∼ 0.3 where the aperture-mass method is most sensitive.

The number density of halos above a given threshold ofMap(θ) can be estimated analytically, using
two ingredients. First, the spatial number density of halos at redshiftz with massM can be described by
the Press-Schechter theory (Press & Schechter 1974), which numerical simulations (Lacey & Cole 1993,
Lacey & Cole 1994) have shown to be a fairly accurate approximation. Second, in a series of very large
N-body simulations, Navarro et al. (1996a, 1997) found that dark matter halos have a universal density
profile which can be described by two parameters, the halo mass and a characteristic scale length, which
depends on the cosmological model and the redshift. Combining these two results from cosmology, Kruse
& Schneider (1999b) calculated the number density of halos exceedingMap. Using the signal-to-noise
estimate eq. (305), a threshold value ofMap can be directly translated into a signal-to-noise threshold
Sc. For an assumed number density ofn = 30arcmin−2 and an ellipticity dispersionσε = 0.2, one finds
Sc≈ (θ/1arcmin)(Map(θ)/0.016).

For the redshift distribution (69, page 22) withβ = 3/2 andz0 = 1, the number density of halos with
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Sc≥ 5 exceeds 10 per square degree for cluster-normalised cosmologies, across angular scales 1′. θ. 10′,
and these halos have a broad redshift distribution which peaks atzd ∼ 0.3. This implies that a wide-field
imaging survey should be able to detect a statistically interesting sample of medium redshift halos, thus
allowing the definition of amass-selectedsample of halos. Such a sample will be of utmost interest for
cosmology, since the halo abundance is considered to be one of the most sensitive cosmological probes
(e.g., Eke et al. 1996, Bahcall & Fan 1998). Current attempts to apply this tool are hampered by the
fact that halos are selected either by the X-ray properties or by their galaxy content. These properties are
much more difficult to predict than the dark matter distribution of halos which can directly be determined
from cosmologicalN-body simulations. Thus, these mass-selected halos will provide a much closer link
to cosmological predictions than currently possible. Kruse & Schneider (1999b) estimated that an imaging
survey of several square degrees will allow one to distinguish between the cosmological models given in
Table 1, owing to the different number density of halos that they predict. Using the aperture-mass statistics,
Erben et al. (2000) recently detected a highly significant matter concentration on two independent wide-
field images centred on the galaxy cluster A 1942. This matter concentration 7′ South of A 1942 is not
associated with an overdensity of bright foreground galaxies, which sets strong lower limits on the mass-
to-light ratio of this putative cluster.

6.8 Cosmic Shear and Biasing

Up to now, we have only considered the mass properties of the large-scale structure and tried to measure
them with weak lensing techniques. An interesting question arises when the luminous constituents of the
Universe are taken into account. Most importantly, the galaxies are supposed to be strongly tied to the
distribution of dark matter. In fact, this assumption underlies all attempts to determine the power spectrum
of cosmic density fluctuations from the observed distribution of galaxies. The relation between the galaxy
and dark-matter distributions is parameterised by the so-called biasing factorb (Kaiser 1984), which is
defined such that the relative fluctuations in the spatial number density of galaxies areb times the relative
density fluctuationsδ,

n(~x)−〈n〉
〈n〉

= bδ(~x) , (312)

where〈n〉 denotes the mean spatial number density of galaxies at the given redshift. The bias factorb is
not really a single number, but generally depends on redshift, on the spatial scale, and on the galaxy type
(see, e.g., Efstathiou 1996, Peacock 1997, Kauffmann et al. 1997, Coles et al. 1998). Typical values for
the bias factor are assumed to beb∼ 1−2 at the current epoch, but can increase towards higher redshifts.
The clustering properties of UV dropout galaxies (Steidel et al. 1998) indicate thatb can be as large as 5 at
redshiftsz∼ 3, depending on the cosmology.

The projected surface mass densityκeff(~θ) should therefore be correlated with the number density
of (foreground) galaxies in that direction. LetGG(w) be the distribution function of a suitably chosen
population of galaxies in comoving distance (which can be readily converted to a redshift probability
distribution). Then, assuming thatb is independent of scale and redshift, the number density of the galaxies
is

nG(~θ) = 〈nG〉
[
1+b

∫
dw GG(w)δ( fK(w)~θ,w)

]
, (313)

where〈nG〉 is the mean number density of the galaxy population. The distribution functionGG(w) depends
on the selection of galaxies. For example, for a flux-limited sample it may be of the form (69). Narrower
distribution functions can be achieved by selecting galaxies in multi-colour space using photometric red-
shift techniques. The correlation function betweennG(~θ) andκeff(~θ) can directly be obtained from eq. (83)
by identifyingq1(w) = 3H2

0Ω0W̄(w) fK(w)/[2c2a(w)] [see eq. (265)], andq2(w) = 〈nG〉bGG(w). It reads

ξGκ(θ) ≡ 〈nGκeff〉(θ) =
3H2

0Ω0

2c2 b〈nG〉
∫

dw
W̄(w) fK(w)

a(w)
GG(w)

×
∫

dk k
2π

Pδ(k,w)J0( fK(w)θk) . (314)
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Similar equations were derived by, e.g., Kaiser (1992), Bartelmann (1995b), Dolag & Bartelmann (1997),
Sanz et al. (1997).

One way to study the correlation between foreground galaxies and the projected density field consists
in correlating the aperture massMap(θ) with a similarly filtered galaxy number density, defined as

N (θ) =
∫

d2ϑ U(|~ϑ|)nG(~ϑ) , (315)

with the same filter functionU as inMap. The correlation betweenMap(θ) andN (θ) then becomes

ξ(θ) ≡ 〈Map(θ)N (θ)〉=
∫

d2ϑ U(|~ϑ|)
∫

d2ϑ′ U(|~ϑ′|)ξGκ(|~ϑ−~ϑ′|) (316)

= 3π
(

H0

c
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Ω0b〈nG〉
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W̄(w)GG(w)
a(w) fK(w)

∫
dl l Pδ

(
l

fK(w)
,w

)
J2(lθ) ,

where we used eq. (83) for the correlation functionξGκ in the final step. The filter functionJ is defined
in eq. (297). Note that this correlation function filters out the power spectrumPδ at redshifts where the
foreground galaxies are situated. Thus, by selecting galaxy populations with narrow redshift distribution,
one can study the cosmological evolution of the power spectrum or, more accurately, the product of the
power spectrum and the bias factor.

The convenient property of this correlation function is that one can define an unbiased estimator forξ
in terms of observables. IfNb galaxies are found in an aperture of radiusθ at positions~ϑi with tangential
ellipticity εti , andNf foreground galaxies at positions~ϕi , then

ξ̃(θ) =
πθ2

Nb

Nb

∑
i=1

Q(|~ϑi |)εti

Nf

∑
k=1

U(|ϕk|) (317)

is an unbiased estimator forξ(θ). Schneider (1998) calculated the noise properties of this estimator, con-
centrating on an Einstein-de Sitter model and a linearly evolving power spectrum which can locally be
approximated by a power law ink. A more general and thorough treatment is given in van Waerbeke
(1998), where various cosmological models and the non-linear power spectrum are considered. van Waer-
beke (1998) assumed a broad redshift distribution for the background galaxies, but a relatively narrow
redshift distribution for the foreground galaxies, withδzd/zd∼ 0.3. For an open model withΩ0 = 0.3, ξ(θ)
declines much faster withθ than for flat models, implying that open models have relatively more power on
small scales at intermediate redshift. This is a consequence of the behaviour of the growth factorD+(w);
see Fig. 6 on page 17. For foreground redshiftszd& 0.2, the signal-to-noise ratio of the estimator (317) for
a single aperture is roughly constant forθ & 5′, and relatively independent of the exact value ofzd over a
broad redshift interval, with a characteristic value of∼ 0.4.

van Waerbeke (1998) also considered the ratio

R≡ ξ(θ)
〈N 2(θ)〉

(318)

and found that it is nearly independent ofθ. This result was shown in Schneider (1998) to hold for linearly
evolving power spectra with power-law shape, but surprisingly it also holds for the fully non-linear power
spectrum. Indeed, varyingθ between 1′ and 100′, Rvaries by less than 2% for the models considered in van
Waerbeke (1998). This is an extremely important result, in that any observed variation ofR with angular
scale indicates a corresponding scale dependence of the bias factorb. A direct observation of this variation
would provide valuable constraints on the models for the formation and evolution of galaxies.

We point out that the ratioR depends, in the linear regime, on the combinationΩ0/b, independent of
the normalisation of the power spectrum. This is to be compared with the combinationΩ0.6

0 /b determined
by peculiar motions of galaxies (e.g., Strauss & Willick 1995 and references therein). Since these com-
binations of the two parameters differ, one might hope that they can be derived separately by combining
them.
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6.9 Numerical Approach to Cosmic Shear, Cosmological Parameter Estimates,
and Observations

6.9.1 Cosmic Shear Predictions from Cosmological Simulations

So far, we have treated the lensing effect of the large-scale structure with analytic means. This was possible
because of two assumptions. First, we considered only the lowest-order lensing effect, by employing the
Born approximation and neglecting lens-lens coupling in going from eq. (256) to eq. (258). Second, we
used the prescription for the non-linear power spectrum as given by Peacock & Dodds (1996), assuming
that it is a sufficiently accurate approximation. Both of these approximations may become less accurate on
small angular scales. Providing a two-point quantity, the analytic approximation ofPκ is applicable only for
two-point statistical measures of cosmic shear. In addition, the error introduced with these approximations
cannot be controlled, i.e., we cannot attach ‘error bars’ to the analytic results.

A practical way to avoid these approximations is to study the propagation of light in a model universe
which is generated by cosmological structure-formation simulations. They typically provide the three-
dimensional mass distribution at different redshifts in a cube whose side-length is much smaller than the
Hubble radius. The mass distribution along a line-of-sight can be generated by combining adjacent cubes
from a sequence of redshifts. The cubes at different redshifts should either be taken from different realisa-
tions of the initial conditions, or, if this requires too much computing time, they should be translated and
rotated such as to avoid periodicity along the line-of-sight. The mass distribution in each cube can then be
projected along the line-of-sight, yielding a surface mass density distribution at that redshift. Finally, by
employing the multiple lens-plane equations, which are a discretisation of the propagation equation (256;
Seitz et al. 1994), shear and magnification can be calculated along light rays within a cone whose size is
determined by the side length of the numerical cube. This approach was followed by many authors (e.g.,
Jaroszynski et al. 1990, Jaroszynski 1991, Bartelmann & Schneider 1991, Blandford et al. 1991, Waxman
& Miralda-Escud́e 1995), but the rapid development ofN-body simulations of the cosmological dark mat-
ter distribution render the more recent studies particularly useful (Wambsganss et al. 1998, van Waerbeke
et al. 1999b, Jain et al. 2000).

As mentioned below eq. (277), the Jacobian matrixA is generally asymmetric when the propagation
equation is not simplified to (258). Therefore, the degree of asymmetry ofA provides one test for the
accuracy of this approximation. Jain et al. (2000) found that the power spectrum of the asymmetric
component is at least three orders of magnitude smaller than that ofκeff. For a second test, we have seen
that the power spectrum ofκeff should equal that of the shear in the frame of our approximations. This
analytic prediction is very accurately satisfied in the numerical simulations.

Jain et al. (2000) and Reblinsky et al. (1999) found that analytic predictions of the dispersions ofκ and
Map respectively, are very accurate when compared to numerical results. For both cosmic shear measures,
however, the analytic predictions of the skewness are not satisfactory on angular scales below∼ 10′. This
discrepancy reflects the limited accuracy of the second-order Eulerian perturbation theory employed in
deriving the analytic results. Hui (1999b) showed that the accuracy of the analytic predictions can be much
increased by using a prescription for the highly-nonlinear three-point correlation function of the cosmic
density contrast, as developed by Scoccimarro & Frieman (1999). On larger angular scales, the predictions
from perturbation theory as described in Sect. 6.7.1 are accurate, as shown by Gaztanaga & Bernardeau
(1998).

The signal-to-noise ratio of the dispersion of the cosmic shear, given explicitly forMap in eq. (305),
is determined by the intrinsic ellipticity dispersion of galaxies and the sampling variance, expressed in
terms of the curtosis. As shown by van Waerbeke et al. (1999b), Reblinsky et al. (1999), and White &
Hu (2000), this curtosis is remarkably large. For instance, the curtosis of the aperture mass exceeds unity
even on scales larger than 10′, revealing non-Gaussianity on such large scales. Unfortunately, this large
sampling variance implies not only that the area over which cosmic shear needs to be measured to achieve
a given accuracy for its dispersion must be considerably larger than estimated for a Gaussian density field,
but also that numerical estimates of cosmic shear quantities need to cover large solid angles for an accurate
numerical determination of the relevant quantities.

From such numerical simulations, one can not only determine moments of the shear distribution, but
also consider its full probability distribution. For example, the predictions for the number density of dark
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matter halos that can be detected through highly significant peaks ofMap – see Sect. 6.7.2 – have been found
by Reblinsky et al. (1999) to be fairly accurate, perhaps surprisingly so, given the assumptions entering
the analytic results. Similarly, the extreme tail (say more than 5 standard deviations from the mean) of the
probability distribution forMap, calculated analytically in Kruse & Schneider (1999a), does agree with the
numerical results; it decreases exponentially.

6.9.2 Cosmological Parameter Estimates

Since the cosmic shear described in this section directly probes the total matter content of the universe, i.e.,
without any reference to the relation between mass and luminosity, it provides an ideal tool to investigate
the large-scale structure of the cosmological density field. Assuming the dominance of cold dark matter,
the statistical properties of the cosmic mass distribution are determined by a few parameters, the most
important of which areΩ0, ΩΛ, the shape parameter of the power spectrum,Γ, and the normalisation of the
power spectrum expressed in terms ofσ8. For each set of these parameters, the corresponding cosmic shear
signals can be predicted, and a comparison with observations then constrains the cosmological parameters.

Furthermore, since weak lensing probes the shape of the projected power spectrum, modifications of
the CDM power spectrum by a contribution from hot dark matter (such as massive neutrinos) may be
measurable; e.g., Cooray (1999a) estimated that a deep weak-lensing survey of 100 square degrees may
yield a lower limit on the neutrino mass of 3.5 eV.

Several approaches to this parameter estimation have been discussed in the literature. For example, van
Waerbeke et al. (1999b) used numerical simulations to generate synthetic cosmic shear data, fixing the
normalisation of the density fluctuations toσ8 Ω0 = 0.6, which is essentially the normalisation by cluster
abundance. A moderately wide and deep weak-lensing survey, covering 25 square degrees and reaching a
number density of 30 galaxies per arcmin2 with characteristic redshiftzs∼ 1, will enable the distinction
between an Einstein-de Sitter model and an open universe withΩ0 = 0.3 at the 6-σ level, though each
of these models is degenerate in theΩ0 vs. ΩΛ plane. For this conclusion, only the skewness of the
reconstructed effective surface mass density or the aperture mass was used. Kruse & Schneider (1999a)
instead considered the highly non-Gaussian tail of the aperture mass statistics to constrain cosmological
parameters, whereas Kruse & Schneider (1999b) considered the abundance of highly significant peaks of
Map as a probe of the cosmological models. The peak statistics of reconstructed surface density maps
(Jain & van Waerbeke 2000) also provides a valuable means to distinguish between various cosmological
models.

Future work will also involve additional information on the redshifts of the background galaxies. Hu
(1999) pointed out that splitting up the galaxy sample into several redshift bins substantially increases the
ability to constrain cosmological parameters. He considered the power spectrum of the projected density
and found that the accuracy of the corresponding cosmological parameters improves by a factor of∼ 7 for
ΩΛ, and by a factor of∼ 3 for Ω0, estimated for a median redshift of unity.

All of the quoted work concentrated mainly on one particular measure of cosmic shear. One goal of
future theoretical investigations will certainly be the construction of a method which combines the various
measures into a ‘global’ statistics, designed to minimise the volume of parameter space allowed by the
data of future observational weak lensing surveys. Future, larger-scale numerical simulations will guide
the search for such a statistics and allow one to make accurate predictions.

In addition to a pure cosmic shear investigation, cosmic shear constraints can be used in conjunc-
tion with other measures of cosmological parameters. One impressive example has been given by Hu &
Tegmark (1999), who showed that even a relatively small weak lensing survey could dramatically improve
the accuracy of cosmological parameters measured by future Cosmic Microwave Background missions.

6.9.3 Observations

One of the first attempts to measure cosmic shear was reported in Mould et al. (1994), where the mean
shear was investigated across a field of 9.6′×9.6′, observed with the Hale 5-meter Telescope. The image
is very deep and has good quality (i.e., a seeing of 0.87′′ FWHM). It is the same data as used by Brainerd
et al. (1996) for the first detection of galaxy-galaxy lensing (see Sect. 8). The mean ellipticity of the 4363
galaxies within a circle of 4.8′ radius with magnitudes 23≤ r ≤ 26 was found to be(0.5± 0.5)%. A
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later, less conservative reanalysis of these data by Villumsen (unpublished), where an attempt was made to
account for the seeing effects, yielded a 3-σ detection of a non-vanishing mean ellipticity.

Following the suggestion that the observed large-angle QSO-galaxy associations are due to weak lens-
ing by the large-scale structure in which the foreground galaxies are embedded (see Sect. 7), Fort et al.
(1996) searched for shear around five luminous radio quasars. In one of the fields, the number density of
stars was so high that no reasonable shear measurement on faint background galaxies could be performed.14

In the remaining four QSO fields, they found a shear signal on a scale of∼ 1′ for three of the QSOs (those
which were observed with SUSI, which has a field-of-view of∼ 2.2′), and on a somewhat larger angular
scale for the fourth QSO. Taken at face value, these observations support the suggestion of magnification
bias caused by the large-scale structure. A reanalysis of the three SUSI fields by Schneider et al. (1998b),
considering thermsshear over the fields, produced a positive value for〈|γ|2〉 at the 99% significance level,
as determined by numerous simulations randomising the orientation angles of the galaxy ellipticities. The
amplitude of therms shear, when corrected for the dilution by seeing, is of the same magnitude as ex-
pected from cluster-normalised models. However, if the magnification bias hypothesis is true, these three
lines-of-sight are not randomly selected, and therefore this measurement is of no cosmological use.

Of course, one or a few narrow-angle fields cannot be useful for a measurement of cosmic shear, owing
to cosmic variance. Therefore, a meaningful measurement of cosmic shear must either include many small
fields, or must be obtained from a wide-field survey. Using the first strategy, several projects are under
way: The Hubble Space Telescope has been carrying out so-called parallel surveys, where one or more of
the instruments not used for primary observations are switched on to obtain data of a field located a few
arc minutes away from the primary pointing. Over the past few years, a considerable database of such
parallel data sets has accumulated. Two teams are currently analysing parallel data sets taken with WFPC2
and STIS, respectively (see Seitz et al. 1998a, Rhodes et al. 2000). In addition, a cosmic-shear survey is
currently under way, in which randomly selected areas of the sky are mapped with the FORS instrument
(∼ 6.7′×6.7′) on the VLT. Some of these areas include the fields from the STIS parallel survey.

The alternative approach is to map big areas and measure the cosmic shear on a wide range of scales.
The wide-field cameras currently being developed and installed are ideally suited for this purpose, and
several groups are actively engaged in this work (see the proceedings of the Boston lens conference, July
1999).

Very recently, four groups have independently and almost simultaneously reported statistically signif-
icant detections of cosmic shear. In alphabetic order: Bacon et al. (2000) used 14 independent fields of
size 8′×16′ obtained with the WHT to measure thermsshear in squares of 8′×8′. Kaiser et al. (2000b)
used six independent images taken with the UH8K camera on CFHT, each 30′×30′ in size, to measure the
cosmic shear on scales between 2′ and 30′. van Waerbeke et al. (2000) observed eight independent fields
with the UH8K and UH12K (30′× 45′) cameras at CFHT and measured therms shear on scales below
3.5′ since they avoided measurements in apertures crossing chip edges. Finally, Wittman et al. (2000)
took three independent fields of size 43′×43′ with the BTC at CTIO to measure the two-point correlation
function of galaxy ellipticities on scales between 2′ and 30′. All four groups discuss their statistical and
systematic uncertainties in detail and employ various tests to convincingly demonstrate the physical reality
of the signal. In particular, they show that remaining systematics most probably contribute to the shear
signal at a level below 1%, i.e. much less than the measured signal on scales. 10′–15′. The results of
these groups are presented in Fig. 25. The yet unpublished result by Maoli et al. is not included. It was ob-
tained from 45 images taken with the FORS1 instrument (6.7′×6.7′) on UT1 of VLT. Evidently, the results
of the various groups are in excellent agreement despite the data being taken with different optical filters,
different cameras, different telescopes, and reduced with different data analysis techniques. This provides
additional evidence for the reality of the cosmic-shear signal. The significance of the results extends up
to 5.5σ, dependent of course on the total size of the fields used for the respective analyses. Since, except
for the VLT data, the number of independent fields used for these studies is small, the error is entirely
dominated by cosmic variance.

These impressive results prove the power of cosmic-shear measurements as a novel tool for probing
the statistical properties of large-scale structures on small scales and at late times in the universe. In
the near future, such measurements will become comparably important, and will provide complementary

14This field was subsequently used to demonstrate the superb image quality of the SUSI instrument on the ESO NTT.
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cosmological information to that obtained from CMB experiments.

Figure 25: Compilation of the results of four different measurements of the cosmic-shear dispersion (with
the two-point shear correlation function of Wittman et al. 2000 transformed into an equivalent dispersion
for comparison). Open triangle: Bacon et al. (2000); filled squares: Kaiser et al. (2000b); open squares:
van Waerbeke et al. (2000); crosses: Wittman et al. (2000). The error bars include both statistical errors and
cosmic variance. Points from the same group at different angular scales are not statistically independent.
The dotted curves are predictions for a cluster-normalisedΛCDM model with effective source redshifts of
zs = 1 (lower curve) andzs = 2 (upper curve), taken from Jain & Seljak (1997). (adapted from Kaiser et al.
2000b)

There is nothing special about weak lensing being carried out predominantly in the optical wavelength
regime, except that the optical sky is full of faint extended sources, whereas the radio sky is relatively empty.
The FIRST radio survey covers at present about 4200 square degrees and contains 4×105 sources, i.e., the
number density is smaller by about a factor∼ 1000 than in deep optical images. However, this radio survey
covers a much larger solid angle than current or foreseeabledeepoptical surveys. As discussed in Refregier
et al. (1998), this survey may yield a significant measurement of the two-point correlation function of image
ellipticities on angular scales& 10′. On smaller angular scales, sources with intrinsic double-lobe structure
cannot be separated from individual independent sources. The Square Kilometer Array (van Haarlem &
van der Hulst 1999) currently being discussed will yield such a tremendous increase in sensitivity for cm-
wavelength radio astronomy that the radio sky will then be as crowded as the current optical sky. Finally,
the recently commissioned Sloan telescope will map a quarter of the sky in five colours. Although the
imaging survey will be much shallower than current weak-lensing imaging, the huge area surveyed can
compensate for the reduced galaxy number density and their smaller mean redshift Stebbins et al. (1996).
Indeed, first weak-lensing results were already reported at the Boston lensing conference (July 1999) from
commissioning data of the telescope (see also Fischer et al. 1999).
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7 QSO Magnification Bias and Large-Scale Structure

7.1 Introduction

Magnification by gravitational lenses is a purely geometrical phenomenon. The solid angle spanned by the
source is enlarged, or equivalently, gravitational focusing directs a larger fraction of the energy radiated
by the source to the observer. Sources that would have been too faint without magnification can therefore
be seen in a flux-limited sample. However, these sources are now distributed over a larger patch of the
sky because the solid angle is stretched by the lens, so that the number density of the sources on the sky
is reduced. The net effect on the number density depends on how many sources are added to the sample
because they appear brighter. If the number density of sources increases steeply with decreasing flux, many
more sources appear due to a given magnification, and the simultaneous dilution can be compensated or
outweighed.

This magnification bias was described in Sect. 4.4.1 (page 46) and quantified in eq. (161). As introduced
there, letµ(~θ) denote the magnification into direction~θ on the sky, andn0(> S) the intrinsic counts of
sources with observed flux exceedingS. In the limit of weak lensing,µ(~θ) & 1, and the flux will not
change by a large factor, so that it is sufficient to know the behaviour ofn0(> S) in a small neighbourhood
of S. Without loss of generality, we can assume the number-count function to be a power law in that
neighbourhood,n0(>S) ∝ S−α. We can safely ignore any redshift dependence of the intrinsic source counts
here because we aim at lensing effects of moderate-redshift mass distributions on high-redshift sources.
Equation (166, page 47) then applies, which relates the cumulative source countsn(> S,~θ) observed in
direction~θ to the intrinsic source counts,

n(> S,~θ) = µα−1(~θ)n0(> S) . (319)

Hence, ifα> 1, the observed number density of objects is increased by lensing, and reduced ifα< 1. This
effect is calledmagnification biasor magnification anti-bias(e.g. Schneider et al. 1992).

The intrinsic number-count function of QSOs is well fit by a broken power law with a slope ofα∼ 0.64
for QSOs fainter than∼ 19th blue magnitude, and a steeper slope ofα ∼ 2.52 for brighter QSOs (Boyle
et al. 1988; Hartwick & Schade 1990; Pei 1995). Faint QSOs are therefore anti-biased by lensing, and
bright QSOs are biased. In the neighbourhood of gravitational lenses, the number density of bright QSOs
is thus expected to be higher than average, in other words, more bright QSOs should be observed close to
foreground lenses than expected without lensing. According to eq. (319), the overdensity factor is

q(~θ) =
n(> S,~θ)
n0(> S)

= µα−1(~θ) . (320)

If the lenses are individual galaxies, the magnificationµ(~θ) drops rapidly with increasing distance from the
lens. The natural scale for the angular separation is the Einstein radius, which is of order an arc second for
galaxies. Therefore, individual galaxies are expected to increase the number density of bright QSOs only
in a region of radius a few arc seconds around them.

Fugmann (1990) reported an observation which apparently contradicts this expectation. He correlated
bright, radio-loud QSOs at moderate and high redshifts with galaxies from the Lick catalogue (Seldner
et al. 1977) and found that there is a significant overdensity of galaxies around the QSOs of some of his
sub-samples. This is intriguing because the Lick catalogue contains the counts of galaxies brighter than
∼ 19th magnitude in square-shaped cells with 10′ side length. Galaxies of. 19th magnitude are typically
at much lower redshifts than the QSOs,z. 0.1−0.2, so that the QSOs with redshiftsz& 0.5−1 are in the
distant background of the galaxies, with the two samples separated by hundreds of megaparsecs. Physical
correlations between the QSOs and the galaxies are clearly ruled out. Can the observed overdensity be ex-
pected from gravitational lensing? By construction, the angular resolution of the Lick catalogue is of order
10′, exceeding the Einstein radii of individual galaxies by more than two orders of magnitude. The result
that Lick galaxies are correlated with bright QSOs can thus neither be explained by physical correlations
nor by gravitational lensing due to individual galaxies.

On the other hand, the angular scale of∼ 10′ is on the right order of magnitude for lensing by large-
scale structures. The question therefore arises whether the magnification due to lensing by large-scale

105



structures is sufficient to cause a magnification bias in flux-limited QSO samples which is large enough
to explain the observed QSO-galaxy correlation. The idea is that QSOs are then expected to appear more
abundantly behind matter overdensities. More galaxies are expected where the matter density is higher
than on average, and so the galaxies would act as tracers for the dark material responsible for the lensing
magnification. This could then cause foreground galaxies to be overdense around background QSOs. This
exciting possibility clearly deserves detailed investigation.

Even earlier than Fugmann, Tyson (1986) had inferred that galaxies apparently underwent strong lu-
minosity evolution from a detection of significant galaxy overdensities on scales of 30′′ around 42 QSOs
with redshifts 1≤ z≤ 1.5, assuming that the excess galaxies were at the QSO redshifts. In the light of later
observations and theoretical studies, he probably was the first to detect weak-lensing induced associations
of distant sources with foreground galaxies.

7.2 Expected Magnification Bias from Cosmological Density Perturbations

To estimate the magnitude of the effect, we now calculate the angular cross-correlation functionξQG(φ) be-
tween background QSOs and foreground galaxies expected from weak lensing due to large-scale structures
(Bartelmann 1995b; Dolag & Bartelmann 1997; Sanz et al. 1997). We employ a simple picture for the
relation between the number density of galaxies and the density contrast of dark matter, the linear biasing
scheme (e.g. Kaiser 1984; Bardeen et al. 1986; White et al. 1987). Within this picture, and assuming
weak lensing, we shall immediately see that the desired correlation functionξQG is proportional to the
cross-correlation functionξµδ between magnificationµ and density contrastδ. The latter correlation can
straightforwardly be computed with the techniques developed previously.

7.2.1 QSO-Galaxy Correlation Function

The angular cross-correlation functionξQG(φ) between galaxies and QSOs is defined by

ξGQ(φ) =
1

〈nQ〉〈nG〉

〈[
nQ(~θ)−〈nQ〉

][
nG(~θ +~φ)−〈nG〉

]〉
, (321)

where〈nQ,G〉 are the mean number densities of QSOs and galaxies averaged over the whole sky. Assuming
isotropy,ξQG(φ) does not depend on the direction of the lag angle~φ. All number densities depend on flux
(or galaxy magnitude), but we leave out the corresponding arguments for brevity.

We saw in eq. (319) in the introduction thatnQ(~θ) = µα−1(~θ)〈nQ〉. Since the magnification expected
from large-scale structures is small,µ= 1+δµwith |δµ|� 1, we can expandµα−1≈ 1+(α−1)δµ. Hence,
we can approximate

nQ(~θ)−〈nQ〉
〈nQ〉

≈ (α−1)δµ(~θ) , (322)

so that the relative fluctuation of the QSO number density is proportional to the magnification fluctuation,
and the factor of proportionality quantifies the magnification bias. Again, forα = 1, lensing has no effect
on the number density.

The linear biasing model for the fluctuations in the galaxy density asserts that the relative fluctuations
in the galaxy number counts are proportional to the density contrastδ,

nG(~θ)−〈nG〉
〈nG〉

= bδ̄(~θ) , (323)

where δ̄(~θ) is the line-of-sight integrated density contrast, weighted by the galaxy redshift distribution,
i.e. thew-integral in eq. (313), page 99. The proportionality factorb is the effective biasing factor appro-
priately averaged over the line-of-sight. Typical values for the biasing factor are assumed to beb& 1−2.
Both the relative fluctuations in the galaxy number density and the density contrast are bounded by−1 from
below, so that the right-hand side should be replaced by max[bδ̄(~θ),−1] in places wherēδ(~θ)<−b−1. For
simplicity we use (323), keeping this limitation in mind.
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Using eqs. (322) and (323), the QSO-galaxy cross-correlation function (321) becomes

ξQG(φ) = (α−1)b〈δµ(~θ)δ̄(~θ +~φ)〉 . (324)

Hence, it is proportional to the cross-correlation functionξµδ between magnification and density contrast,
and the proportionality factor is given by the steepness of the intrinsic QSO number counts and the bias
factor (Bartelmann 1995b). As expected from the discussion of the magnification bias, the magnification
bias is ineffective forα = 1, and QSOs and galaxies are anti-correlated forα < 1. Furthermore, if the
number density of galaxies does not reflect the dark-matter fluctuations,b would vanish, and the correlation
would disappear. In order to find the QSO-galaxy cross-correlation function, we therefore have to evaluate
the angular cross-correlation function between magnification and density contrast.

7.2.2 Magnification-Density Correlation Function

We have seen in Sect. 6 that the magnification fluctuation is twice the effective convergenceδµ(~θ) =
2κeff(~θ) in the limit of weak lensing, see eq. (276, page 85). The latter is given by eq. (266, page 82), in
which the average over the source-distance distribution has already been performed. Therefore, we can
immediately write down the source-distance averaged magnification fluctuation as

δµ̄(~θ) =
3H2

0Ω0

c2

∫ wH

0
dwW̄Q(w) fK(w)

δ[ fK(w)~θ,w]
a(w)

. (325)

Here,W̄Q(w) is the modified QSO weight function

W̄Q(w)≡
∫ wH

w
dw′GQ(w′)

fK(w′−w)
fK(w′)

, (326)

andGQ(w) is the normalised QSO distance distribution.
Both the average density contrastδ̄ and the average magnification fluctuationδµ̄ are weighted pro-

jections of the density fluctuations along the line-of-sight, which is assumed to be a homogeneous and
isotropic random field. As in the derivation of the effective-convergence power spectrum in Sect. 6, we can
once more employ Limber’s equation in Fourier space to find the cross power spectrumPµδ(l) for projected
magnification and density contrast,

Pµδ(l) =
3H2

0Ω0

c2

∫ wH

0
dw

W̄Q(w)GG(w)
a(w) fK(w)

Pδ

(
l

fK(w)

)
. (327)

The cross-correlation function between magnification and density contrast is obtained from eq. (327) via
Fourier transformation, which can be carried out and simplified to yield

ξµδ(φ) = 3H2
0Ω0

c2

∫ wH

0
dw′ fK(w′)W̄Q(w′)GG(w′)a−1(w′)

×
∫ ∞

0

kdk
2π

Pδ(k,w′)J0[ fK(w′)kφ] . (328)

Quite obviously, there is a strong similarity between this equation and that for the magnification autocor-
relation function, eq. (281, page 86). We note that eq. (328) automatically accounts for galaxy autocorre-
lations through the matter power spectrumPδ(k).

We point out that the dependence of the QSO-galaxy correlation function scales likeξQG ∝ bΩ0Pδ(keff,
wherekeff is the comoving wave number determined by the peak of the redshift distribution of the fore-
ground galaxies and the angular separationφ considered. On the other hand, the auto-correlation function
of the foreground galaxies behaves likeξGG ∝ b2Pδ(keff), which implies that the ratioξQG/ξGG ∝ Ω/b, the
same dependence as already stressed earlier (Sect. 6.8, page 99). Again, this ratio is nearly independent of
the normalisation of the power spectrum, and therefore a convenient measure of the ratioΩ/b (Beńıtez &
Sanz 1999).
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7.2.3 Distance Distributions and Weight Functions

The QSO and galaxy weight functionsGQ,G(w) are normalised representations of their respective redshift
distributions, where the redshift needs to be transformed to comoving distancew.

The redshift distribution of QSOs has frequently been measured and parameterised. Using the func-
tional form and the parameters determined by Pei (1995), the modified QSO weight functionW̄Q(w) has
the shape illustrated in the top panel of Fig. 26. It is necessary for our present purposes to be able to impose
a lower redshift limit on the QSO sample. Since we want to study lensing-induced correlations between
background QSOs and foreground galaxies, there must be a way to exclude QSOs physically associated
with galaxy overdensities. This is observationally achieved by choosing a lower QSO redshift cut-off high
enough to suppress any redshift overlap between the QSO and galaxy samples. This procedure must be re-
produced in theoretical calculations of the QSO-galaxy cross-correlation function. This can be achieved by
cutting off the observed redshift distributionGQ below some redshiftz0, re-normalising it, and putting the
result into eq. (326) to find̄WQ. The five curves shown in the top panel of Fig. 26 are for cut-off redshifts
z0 increasing from 0.0 (solid curve) to 2.0 in steps of 0.5. Obviously, the peak in̄WQ shifts to largerw for
increasingz0.

Figure 26: QSO and galaxy weight functions,W̄Q(w) andGG(w), respectively. Top panel:̄WQ(w) for five
different choices of the lower cut-off redshiftz0 imposed on the QSO sample;z0 increases from 0.0 (solid
curve) to 2.0 in steps of 0.5. The peak inW̄Q(w) shifts to larger distances for increasingz0. Bottom panel:
GG(w) for five different galaxy magnitude limitsm0, increasing from 18.5 to 22.5 (solid curve) in steps of
one magnitude. The peak in the galaxy distance distribution shifts towards larger distances with increasing
m0, i.e. with decreasing brightness of the galaxy sample.

Galaxy redshift distributionsGG can be obtained by extrapolating local galaxy samples to higher red-
shifts, adopting a constant comoving number density and a Schechter-type luminosity function. For the
present purposes, this is a safe procedure because the galaxies to be correlated with the QSOsshouldbe
at sufficiently lower redshifts than the QSOs to avoid overlap between the samples. Thus the extrapolation
from the local galaxy population is well justified. In order to convert galaxy luminosities to observed mag-
nitudes,k-corrections need to be taken into account. Conveniently, the resulting weight functions should
be parameterised by the brightness cut-off of the galaxy sample, in practice by the maximum galaxy mag-
nitudem0 (i.e. the minimum luminosity) required for a galaxy to enter the sample. The five representative
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curves forGG(w) in the lower panel of Fig. 26 are form0 increasing from 18.5 to 22.5 (solid curve) in
steps of one magnitude.R-band magnitudes are assumed. For increasing cut-off magnitudem0, i.e. for
fainter galaxy samples, the distributions broaden, as expected. The correlation amplitude as a function of
m0 peaks ifm0 is chosen such that the median distance to the galaxies is roughly half the distance to the
bulk of the QSO population considered.

7.2.4 Simplifications

It turns out in practice that the exact shapes of the QSO and galaxy weight functionsW̄Q(w) andGG(w)
are of minor importance for the results. Allowing inaccuracies of order 10%, we can replace the functions
GQ,G(w) by delta distributions centred on typical QSO and galaxy distanceswQ andwG <wQ. Then, from
eq. (326),

W̄Q(w) =
fK(wQ−w)

fK(wQ)
H(wQ−w) , (329)

where H(x) is the Heaviside step function, and the line-of-sight integration in eq. (325) becomes trivial.
It is obvious that matter fluctuations at redshifts higher than the QSO redshift do not contribute to the
cross-correlation functionξµδ(φ): Inserting (329) together withGG = δ(w−wG) into eq. (328), we find
ξµδ(φ) = 0 if wG > wQ, as it should be.

The expression for the magnification-density cross-correlation function further simplifies if we spe-
cialise to a model universe with zero spatial curvature,K = 0, such thatfK(w) = w. Then,

W̄Q(w) =
(

1− w
wQ

)
H(wQ−w) , (330)

and the cross-correlation functionξµδ(φ) reduces to

ξµδ(φ) =
3H2

0Ω0

c2

wG

a(wG)

(
1− wG

wQ

) ∫ ∞

0

kdk
2π

Pδ(k,wG) J0(wGkφ) (331)

for wQ > wG, andξµδ(φ) = 0 otherwise.

7.3 Theoretical Expectations

7.3.1 Qualitative Behaviour

Before we evaluate the magnification-density cross-correlation function fully numerically, we can gain
some insight into its expected behaviour by inserting the CDM and HDM model spectra defined in eq. (284,
page 87) into eq. (328) and expanding the result into a power series inφ (Bartelmann 1995b). As in the case
of the magnification auto-correlation function before, the two model spectra produce qualitatively different
results. To first order inφ, ξµδ(φ) decreases linearly with increasingφ for CDM, while it is flat for HDM.
The reason for this different appearance is the lack of small-scale power in HDM, and the abundance
thereof in CDM. The two curves shown in Fig. 27 illustrate this for an Einstein-de Sitter universe with
Hubble constanth = 0.5. The underlying density-perturbation power spectra were normalised by the local
abundance of rich clusters, and linear density evolution was assumed.

The linear correlation amplitude,ξµδ(0), for CDM is of order 3× 10−3, and about a factor of five
smaller for HDM. The magnification-density cross-correlation function for CDM drops to half its peak
value within a few times 10 arc minutes. This, and the monotonic increase ofξµδ towards smallφ, indicate
that density perturbations on angular scales below 10′ contribute predominantly toξµδ. At typical lens
redshifts, such angular scales correspond to physical scales up to a few Mpc. Evidently therefore, the non-
linear evolution of the density perturbations needs to be taken into account, and its effect is expected to be
substantial.
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Figure 27: Cross-correlation functions between magnification and density contrast,ξµδ(φ), are shown for
an Einstein-de Sitter universe withh = 0.5, adopting CDM (solid curve) and HDM (dotted curve) density
fluctuation spectra. Both spectra are normalised to the local cluster abundance, and linear density evolution
is assumed. The lower cut-off redshift of the QSOs isz0 = 0.3, the galaxy magnitude limit ism0 = 20.5. In
agreement with the expectation derived from the CDM and HDM model spectra (284, page 87), the CDM
cross-correlation function decreases linearly with increasingφ for smallφ, while it is flat to first order inφ
for HDM. The small-scale matter fluctuations in CDM compared to HDM causeξµδ(φ) to increase more
steeply asφ→ 0.

7.3.2 Results

Figure 28 confirms this expectation; it shows magnification-density cross-correlation functions for the four
cosmological models detailed in Tab. 1 on page 78. Two curves are shown for each model, one for linear
and the other for non-linear density evolution. The two curves of each pair are easily distinguished because
non-linear evolution increases the cross-correlation amplitude at smallφ by about an order of magnitude
above linear evolution, quite independent of the cosmological model. At the same time, the angular cross-
correlation scale is reduced to a few arc minutes. At angular scales. 30′, the non-linear cross-correlation
functions are above the linear results, falling below at larger scales. The correlation functions for the three
cluster-normalised models (SCDM, OCDM andΛCDM; see Tab. 1 on page 78) are very similar in shape
and amplitude. The curve for theσCDM model lies above the other curves by a factor of about five, but for
low-density universes, the influence of different power-spectrum normalisations are much less prominent.

The main results to be extracted from Fig. 28 are that the amplitude of the magnification-density cross-
correlation function,ξµδ(0), reaches approximately 5× 10−2, and thatξµδ drops by an order of magni-
tude within about 20′. This behaviour is quite independent of the cosmological parameters if the density-
fluctuation power spectrum is normalised by the local abundance of rich galaxy clusters. More detailed
results can be found in Dolag & Bartelmann (1997) and Sanz et al. (1997).

7.3.3 Signal-to-Noise Estimate

The QSO-galaxy correlation functionξQG(φ) is larger thanξµδ(φ) by the factor(α−1)b. The value of the
bias factorb is yet unclear, but it appears reasonable to assume that it is between 1 and 2. For optically
selected QSOs,α≈ 2.5, so that(α−1)b≈ 2−3. Combining this with the correlation amplitude for CDM
read off from Fig. 28, we can expectξQG(0). 0.1.

Given the meaning ofξQG(φ), the probability to find a foreground galaxy close to a background QSO
is increased by a factor of[1+ξQG(φ)]. 1.1 above random. In a small solid angle d2ω around a randomly
selected background QSO, we thus expect to find

NG≈ [1+ ξQG(0)]〈nG〉d2ω≡ [1+ ξQG(0)]〈NG〉 (332)
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Figure 28: Angular magnification-density cross-correlation functionsξµδ(φ) are shown for the four cosmo-
logical models specified in Table 1 on page 78. Two curves are shown for each cosmological model; those
with the higher (lower) amplitude atφ = 0 were calculated with the non-linearly (linearly) evolving density-
perturbation power spectra, respectively. The models are: SCDM (solid curves),σCDM (dotted curves),
OCDM (short-dashed curves), andΛCDM (long-dashed curves). Obviously, non-linear evolution has a
substantial effect. It increases the correlation amplitude by about an order of magnitude. The Einstein-de
Sitter model normalised toσ8 = 1 has a significantly larger cross-correlation amplitude than the cluster-
normalised Einstein-de Sitter model. For the low-density models, the difference is much smaller. The
curves for the cluster-normalised models are very similar, quite independent of cosmological parameters.

galaxies, where〈NG〉 is the average number of galaxies within a solid angle of d2ω. In a sample ofNQ

fields around randomly selected QSOs, the signal-to-noise ratio for the detection of a galaxy overdensity is
then

S
N
≈ NQ(NG−〈NG〉)

(NQ〈NG〉)1/2
= (NQ〈NG〉)1/2 ξQG(0) . (333)

Typical surface number densities of reasonably bright galaxies are of ordernG∼ 10 per square arc minute.
Therefore, there should be of order〈NG〉 ∼ 30 galaxies within a randomly selected disk of one arc minute
radius, in which the QSO-galaxy cross correlation is sufficiently strong. If we require a certain minimum
signal-to-noise ratio such that S/N ≥ (S/N)0, the number of QSO fields to be observed in order to meet
this criterion is

NQ ≥
(

S
N

)2

0
ξ−2

QG(0)〈NG〉−1

=
(

S
N

)2

0
[(α−1)b]−2 ξ−2
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= 20

[
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]2 [ (α−1)b
4

]−2 (ξµδ(0)
0.05

)−2 ( 30
〈NG〉

)
, (334)

where we have inserted typical numbers in the last step. This estimate demonstrates that gravitational
lensing by non-linearly evolving large-scale structures in cluster-normalised CDM can produce correlations
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between background QSOs and foreground galaxies at the 5σ level on arc minute scales in samples of& 20
QSOs. The angular scale of the correlations is expected to be of order 1 to 10 arc minutes. Equation (334)
makes it explicit that more QSO fields need to be observed in order to establish the significance of the
QSO-galaxy correlations if (i) the QSO number count function is shallow (α close to unity), and (ii) the
galaxy bias factorb is small. In particular, no correlations are expected ifα = 1, because then the dilution
of the sources and the increase in QSO number exactly cancel. Numerical simulations (Bartelmann 1995b)
confirm the estimate (334).

Fugmann’s (1990) observation was also tested in a numerical model universe based on the adhesion
approximation to structure formation (Bartelmann & Schneider 1992). This model universe was populated
with QSOs and galaxies, and QSO-galaxy correlations on angular scales on the order of∼ 10′ were investi-
gated using Spearman’s rank-order correlation test (Bartelmann & Schneider 1993a). Light propagation in
the model universe was described with the multiple lens-plane approximation of gravitational lensing. In
agreement with the analytical estimate presented above, it was found that lensing by large-scale structures
can indeed account for the observed correlations between high-redshift QSOs and low-redshift galaxies,
provided the QSO number-count function is steep. Lensing by individual galaxies was confirmed to be
entirely negligible.

7.3.4 Multiple-Waveband Magnification Bias

The magnification bias quantified by the number-count slopeα can be substantially increased if QSOs are
selected in two or more mutually uncorrelated wave bands rather than one (Borgeest et al. 1991). To see
why, suppose that optically brightandradio-loud QSOs were selected, and that their fluxes in the two wave
bands are uncorrelated. LetS1,2 be the flux thresholds in the optical and in the radio regimes, respectively,
andn1,2 the corresponding number densities of either optically bright or radio-loud QSOs on the sky. As
in the introduction, we assume thatn1,2 can be written as power laws inS1,2, with exponentsα1,2.

In a small solid angle d2ω, the probability to find an optically brightor radio-loud QSO is thenpi(Si) =
ni(Si)d2ω, and the joint probability to find an optically brightand radio-loud QSO is the product of the
individual probabilities, or

p(S1,S2) = p1(S1) p2(S2) = [n1(S1)n2(S2)]d2ω ∝ S−α1
1 S−α2

2 d2ω , (335)

provided there is no correlation between the fluxesS1,2 so that the two probabilities are independent. Sup-
pose now that lensing produces a magnification factorµ across d2ω. The joint probability is then changed
to

p′(S1,S2) ∝
(

µ
S1

)α1
(

µ
S2

)α2 d2ω
µ

= µα1+α2−1 p(S1,S2) . (336)

Therefore, the magnification bias in the optically brightandradio-loud QSO sample is as efficient as if the
number-count function had a slope ofα = α1 + α2.

More generally, the effective number-count slope for the magnification bias in a QSO sample that is
flux limited in mmutually uncorrelated wave bands is

α =
m

∑
i=1

αi , (337)

where αi are the number-count slopes in the individual wave bands. Then, the QSO-galaxy cross-
correlation function is

ξQG(φ) =

(
m

∑
i=1

αi−1

)
bξµδ(φ) , (338)

and can therefore be noticeably larger than for a QSO sample which is flux limited in one wave band only.

7.4 Observational Results

After this theoretical investigation, we turn to observations of QSO-galaxy cross-correlations on large
angular scales. The existence of QSO-galaxy correlations was tested and verified in several studies using
some very different QSO- and galaxy samples.
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Bartelmann & Schneider (1993b) repeated Fugmann’s analysis with a well-defined sample of back-
ground QSOs, namely the optically identified QSOs from the 1-Jansky catalogue (Kühr et al. 1981; Stickel
et al. 1993; Stickel & K̈uhr 1993). Optically identified QSOs with measured redshifts need to be bright
enough for detection and spectroscopy, hence the chosen sample is implicitly also constrained by an optical
flux limit. Optical and radio QSO fluxes are generally not strongly correlated, so that the sample is affected
by a double-waveband magnification bias, which can further be strengthened by explicitly imposing an
optical flux (or magnitude) limit.

Although detailed results differ from Fugmann’s, the presence of the correlation is confirmed at the 98%
confidence level for QSOs with redshifts≥ 0.75 and brighter than 18th magnitude. The number of QSOs
matching these criteria is 56. The correlation significance decreases both for lower- and higher-redshift
QSO samples, and also for optically fainter ones. This is in accordance with an explanation in terms of
a (double-waveband) magnification bias due to gravitational lensing. For low-redshift QSOs, lensing is
not efficient enough to produce the correlations. For high-redshift QSOs, the most efficient lenses are at
higher redshifts than the galaxies, so that theobservedgalaxies are uncorrelated with the structures which
magnify the QSOs. Hence, the correlation is expected to disappear for increasing QSO redshifts. For an
optically unconstrained QSO sample, the effective slope of the number-count function is smaller, reducing
the strength of the magnification bias and therefore also the significance of the correlation.

With a similar correlation technique, correlations between the 1-Jansky QSO sample and IRAS galax-
ies (Bartelmann & Schneider 1994) and diffuse X–ray emission (Bartelmann et al. 1994; see also Cooray
1999b) were investigated, leading to qualitatively similar results. IRAS galaxies are correlated with opti-
cally bright, high-redshiftz≥ 1.5 1-Jansky sources at the 99.8% confidence level. The higher QSO redshift
for which the correlation becomes significant can be understood if the IRAS galaxy sample is deeper than
the Lick galaxy sample, so that the structures responsible for the lensing can be traced to higher redshift.

Bartsch et al. (1997) re-analysed the correlation between IRAS galaxies and 1-Jansky QSOs using a
more advanced statistical technique which can be optimised to the correlation function expected from lens-
ing by large-scale structures. In agreement with Bartelmann & Schneider (1994), they found significant
correlations between the QSOs and the IRAS galaxies on angular scales of∼ 5′, but the correlation ampli-
tude is higher than expected from large-scale structure lensing, assuming linear evolution of the density-
perturbation power spectrum. Including non-linear evolution, however, the results by Bartsch et al. (1997)
can well be reproduced (Dolag & Bartelmann 1997).

X–ray photons from the ROSATAll-Sky Survey(e.g. Voges 1992) are correlated with optically bright
1-Jansky sources both at low (0.5≤ z≤ 1.0) and at high redshifts (1.5≤ z≤ 2.0), but there is no signifi-
cant correlation with QSOs in the intermediate redshift regime. A plausible explanation for this is that the
correlation of X–ray photons with low-redshift 1-Jansky QSOs is due to hot gas which is physically asso-
ciated with the QSOs, e.g. which resides in the host clusters of these QSOs. Increasing the source redshift,
the flux from these clusters falls below the detection threshold of theAll-Sky Survey, hence the correlation
disappears. Upon further increasing the QSO redshift, lensing by large-scale structures becomes efficient,
and the X–ray photons trace hot gas in the lenses.

Rodrigues-Williams & Hogan (1994) found a highly significant correlation between optically-selected,
high-redshift QSOs and Zwicky clusters. Their cluster sample was fairly bright, which indicates that the
clusters are in the foreground of the QSOs. This rules out that the clusters are physically associated with
the QSOs and thus exert environmental effects on them which might lead to the observed association.
Rodrigues-Williams & Hogan discussed lensing as the most probable reason for the correlations, although
simple mass models for the clusters yield lower magnifications than required to explain the significance
of the effect. Seitz & Schneider (1995b) repeated their analysis with the 1-Jansky sample of QSOs. They
found agreement with Rodrigues-Williams & Hogan’s result for intermediate-redshift (z∼ 1) QSOs, but
failed to detect significant correlations for higher-redshift sources. In addition, a significant under-density
of low-redshift QSOs close to Zwicky clusters was found, for which environmental effects like dust ab-
sorption are the most likely explanation. A variability-selected QSO sample was correlated with Zwicky
clusters by Rodrigues-Williams & Hawkins (1995). They detected a significant correlation between QSOs
with 0.4≤ z≤ 2.2 with foreground Zwicky clusters (with〈z〉 ∼ 0.15) and interpreted it in terms of grav-
itational lensing. Again, the implied average QSO magnification is substantially larger than that inferred
from simple lens models for clusters with velocity dispersions of∼ 103 kms−1. Wu & Han (1995) searched
for associations between distant 1-Jansky and 2-Jansky QSOs and foreground Abell clusters. They found
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no correlations with the 1-Jansky sources, and a marginally significant correlation with 2-Jansky sources.
They argue that lensing by individual clusters is insufficient if cluster velocity dispersions are of order
103 kms−1, and that lensing by large-scale structures provides a viable explanation.

Figure 29: QSO-galaxy cross-correlation measurements are plotted together with theoretical cross-
correlation functionsξQG(φ) for various cosmological models as indicated by line type. The CDM density-
perturbation power spectrum was cluster-normalised, and non-linear evolution was taken into account. The
figure shows that the measurements fall above the theoretical predictions at small angular scales,φ . 2′.
This excess can be attributed to gravitational lensing by individual galaxy clusters (see the text for more
detail). The theoretical curves depend on the Hubble constanth through the shape parameterΓ = Ω0h,
which determines the peak location of the power spectrum.

Beńıtez & Mart́ınez-Gonźalez (1995) found an excess of red galaxies from the APM catalog with
moderate-redshift (z∼ 1) 1-Jansky QSOs on angular scales< 5′ at the 99.1% significance level. Their
colour selection ensures that the galaxies are most likely at redshifts 0.2≤ z≤ 0.4, well in the foreground
of the QSOs. The amplitude and angular scale of the excess is compatible with its originating from lensing
by large-scale structures. The measurements by Benı́tez & Mart́ınez-Gonźalez (1995) are plotted together
with various theoretical QSO-galaxy cross-correlation functions in Fig. 29, which clearly shows that the
QSO-galaxy cross-correlation measurements agree quite well with the cross-correlation functionsξQG(φ),
but they fall above the range of theoretical predictions at small angular scales,φ. 2′. This can be attributed
to the magnification bias due to gravitational lensing by individual clusters. Being based on the weak-
lensing approximation, our approach breaks down when the magnification becomes comparable to unity,
µ& 1.5, say. This amount of magnification occurs for QSOs closer than∼ 3 Einstein radii to cluster
cores. Depending on cosmological parameters, QSO and galaxy redshifts,∼ 3 Einstein radii correspond to
∼ 1′−2′. Hence, weexpectthe theoretical expectations from lensing by large-scale structures alone to fall
below the observations on angular scalesφ. 1′−2′.

Norman & Impey (1999) took wide-field R-band images centred on a subsample of 1-Jansky QSOs with
redshifts between 1 and 2. They searched for an excess of galaxies in the magnitude range 19.5< R< 21
on angular scales of& 10′ around these QSOs and found a correlation at the 99% significance level. The
redshift distribution of the galaxies is likely to peak aroundz∼ 0.2. The angular cross-correlation function
between the QSOs and the galaxies agrees well with the theoretical expectations, although the error bars
are fairly large.
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All these results indicate that there are correlations between background QSOs and foreground ‘light’,
with light either in the optical, the infrared, or the (soft) X–ray wave bands. The angular scale of the
correlations is compatible with that expected from lensing by large-scale structures, and the amplitude
is either consistent with that explanation or somewhat larger. Wu & Fang (1996) discussed whether the
autocorrelation of clusters modelled as singular isothermal spheres can produce sufficient magnification
to explain this result. They found that this is not the case, and argued that large-scale structures must
contribute substantially.

If lensing is indeed responsible for the correlations detected, other signatures of lensing should be found
in the vicinity of distant QSOs. Indeed, Fort et al. (1996) searched for the shear induced by weak lensing
in the fields of five luminous QSOs withz≈ 1 and found coherent shear signals in four of them (see also
Schneider et al. 1998b). In addition, they detected galaxy groups in three of their fields. Earlier, Bonnet
et al. (1993) had found evidence for coherent weak shear in the field of the potentially multiply-imaged
QSO 2345+007, which was later identified with a distant cluster (Mellier et al. 1994; Fischer et al. 1994).

Bower & Smail (1997) searched for weak-lensing signals in fields around eight luminous radio sources
at redshifts∼ 1. They confirmed the coherent shear detected earlier by Fort et al. (1996) around one of
the sources (3C336 atz= 0.927), but failed to find signatures of weak lensing in the combined remaining
seven fields.

A cautionary note was recently added to this discussion by Williams & Irwin (1998) and Norman &
Williams (2000). Cross-correlating LBQS and 1-Jansky quasars with APM galaxies, they claimed signifi-
cant galaxy overdensities around QSOs on angular scales of order one degree. As discussed above, lensing
by currently favoured models of large-scale structures is not able to explain such large correlation scales.
Thus, if these results hold up, they would provide evidence that there is a fundamental difficulty with the
current models of large-scale structure formation.

7.5 Magnification bias of galaxies

The investigation of the angular correlation between QSOs and foreground galaxies was motivated by ob-
servational evidence of this effect, as described in the previous subsection. However, the magnification bias
generates a similar correlation function between foreground galaxies and different classes of background
sources, provided the latter have a slope of the cumulative sources counts different from unity. QSOs are
particularly convenient due to their steep number counts and their high redshift. Moessner et al. (1998)
and Moessner & Jain (1998) studied the angular correlation between two different populations of galaxies.
If, for example, the two populations of galaxies were selected by their apparent magnitude, the fainter
one will on average be more distant than the brighter one; therefore, matter traced by the brighter galax-
ies magnifies the fainter population of galaxies. Unfortunately, owing to the broad redshift distribution
of galaxies at fixed apparent magnitude, there will be a significant overlap in redshift between these two
populations. Since galaxies are auto-correlated, this intrinsic clustering contribution is likely to swamp any
lensing-induced correlation. Note that, owing to the high-redshift cut used for the QSO samples considered
in the previous subsection, this intrinsic correlation is of little or no importance there.

However, if the foreground and background populations can be better separated, the lensing effect may
be stronger than the intrinsic correlation. For example, by using photometric redshift estimates, the two
galaxy populations may be nicely separated in their redshift distribution. In that case, the cross-correlation
function will take the form

ξ12(φ) = (α2−1)b1ξµδ(φ)+ ξ′(φ) , (339)

where the first term is the contribution due to the magnification and has the same form as that derived for
the QSO-galaxy correlation in the the previous subsection, andξ′ is the intrinsic cross-correlation function
coming from imperfect redshift separation of the two galaxy populations. Note thatα2 is the number-count
slope of the background galaxies, andb1 the bias factor of the foreground population. Ifξµδ andξ′ have
different functional forms with respect toφ, these two contributions to the cross-correlation function may
be separable.

From early commissioning data of the Sloan Digital Sky Survey, covering 100 square degrees in five
passbands, Jain et al. (1999) attempted to detect this magnification bias-induced cross-correlation between
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two galaxy populations. From their photometric redshift estimates for the galaxies, they define the fore-
ground and background galaxy samples by 0≤ z1≤ 0.15 and 0.35≤ z2≤ 0.45, together with a magnitude
cut atr ≤ 20.5. The large gap between the two redshift ranges accounts for the fact that photometric red-
shifts have an uncertainty of slightly less that∆z= 0.1, so that this conservative cut should minimise the
overlap between the two populations. At the magnitude cut, the so-defined background sample exhibits an
effective slope ofα ∼ 0.5, so that lensing should produce an anti-correlation. In fact, Jain et al. (1999)
found thatξ12 is negative forφ & 1′, but slightly positive for smaller angular separations. Note that this
behaviour is expected from eq. (339), since the positive correlation at small angles is due to the prevalence
of the intrinsic cross-correlation owing to the redshift overlap of the two samples. In order to strengthen
their interpretation of this result, Jain et al. (1999) split their background sample into a red and a blue
half. The number-count slope of these two subsamples of background galaxies at the magnitude cut is
α ∼ 0 andα ∼ 1, respectively. Correspondingly, they find thatξ12 calculated with the blue subsample
shows no sign of an anti-correlation at any angular separation, whereas the red subsample shows a stronger
anti-correlation than for the total sample of background galaxies. Hence, it seems that the magnification
bias of galaxies has been measured; given that the data on which this result is based constitutes only∼ 1%
of the total imaging data the Sloan Survey will accumulate, it is clear that the correlation functionξ12 will
be measurable with high precision out to large angular separations, providing a very convenient handle on
Ω/b, and the scale dependence ofb at redshiftsz∼ 0.1.

7.6 Outlook

Cross correlations between distant QSOs and foreground galaxies on angular scales of about ten arc minutes
have been observed, and they can be attributed to the magnification bias due to gravitational lensing by
large-scale structures. Coherent shear patterns have been detected around QSOs which are significantly
correlated with galaxies. The observations so far are in reasonable agreement with theoretical expectations,
except for the higher observed signal in the innermost few arc minutes, and the claimed correlation signal
on degree scales. While the excess cross-correlation on small scales can be understood by the lensing
effects of individual galaxy clusters, correlations on degree scales pose a severe problem for the lensing
explanation if they persist, because the lensing-induced cross-correlation quickly dies off beyond scales of
approximately 10′.

QSO-galaxy cross-correlations have the substantial advantage over other diagnostics of weak lensing
by large-scale structures that they do not pose any severe observational problems. In particular, it is not
necessary to measure either shapes or sizes of faint background galaxies accurately, because it is sufficient
to detect and count comparatively bright foreground galaxies near QSOs. However, such counting requires
homogeneous photometry, which is difficult to achieve in particular on photographic plates, and requires
careful calibration.

Since the QSO-galaxy cross-correlation function involves filtering the density-perturbation power spec-
trum with a fairly broad function, the zeroth-order Bessel function J0(x) [cf. eq. (328)], these correlations
are not well suited for constraining the power spectrum. If the cluster normalisation is close to the correct
one, the QSO-galaxy cross-correlation function is also fairly insensitive to cosmological parameters.

Rather, QSO-galaxy cross correlations are primarily important for measuring the bias parameterb. The
rationale of future observations of QSO-galaxy correlations should therefore be to accurately measure the
correlation amplitude on scales between a few and 10 arc minutes. On smaller scales, the influence of
individual galaxy clusters sets in, and on larger scales, the correlation signal is expected to be weak. Once
it becomes possible to reliably constrain the density-fluctuation power spectrum, such observations can
then be used to quantify the bias parameter, and thereby provide most valuable information for theories of
galaxy formation. A possible dependence of the bias parameter on scale and redshift can also be extracted.

Sufficiently large data fields for this purpose will soon become available, in particular through wide-
field surveys like the 2dF Survey (Colless 1998) and the Sloan Digital Sky Survey (Gunn & Knapp 1993,
Loveday & Pier 1998). It therefore appears feasible that within a few years weak lensing by large-scale
structures will be able to quantify the relation between the distributions of galaxies and the dark matter.
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8 Galaxy-Galaxy Lensing

8.1 Introduction

Whereas the weak lensing techniques described in Sect. 5 are adequate to map the projected matter distri-
bution of galaxy clusters, individual galaxies are not sufficiently massive to show up in the distortion of
the images of background galaxies. From the signal-to-noise ratio (178, page 50) we see that individual
isothermal halos with a velocity dispersion in excess of∼ 600kms−1 can be detected at a high significance
level with the currently achievable number densities of faint galaxy images. Galaxies have halos of much
lower velocity dispersion: The velocity dispersion of anL∗ elliptical galaxy is∼ 220kms−1, that of anL∗
spiral∼ 145kms−1.

However, if one is not interested in the mass properties of individual galaxies, but instead in the sta-
tistical properties of massive halos of a population of galaxies, the weak lensing effects of several such
galaxies can statistically be superposed. For example, if one considersNf identical foreground galaxies,

the signal-to-noise ratio of the combined weak lensing effect increases asN1/2
f , so that for a typical velocity

dispersion for spiral galaxies ofσv∼ 160kms−1, a few hundred foreground galaxies are sufficient to detect
the distortion they induce on the background galaxy images.

Of course, detection alone does not yield new insight into the mass properties of galaxy halos. A quan-
titative analysis of the lensing signal must account for the fact that ‘identical’ foreground galaxies cannot
be observed. Therefore, the mass properties of galaxies have to be parameterised in order to allow the joint
analysis of the foreground galaxy population. In particular, one is interested in the velocity dispersion of
a typical (L∗, say) galaxy. Furthermore, the rotation curves of (spiral) galaxies which have been observed
out to∼ 30h−1 kpc show no hint of a truncation of the dark halo out to this distance. Owing to the lack
of dynamical tracers, with the exception of satellite galaxies (Zaritsky & White 1994), a direct observation
of the extent of the dark halo towards large radii is not feasible with conventional methods. The method
described in this section uses the light bundles of background galaxies as dynamical tracers, which are
available at all distances from the galaxies’ centres, and are therefore able, at least in principle, to probe
the size (or the truncation radius) of the halos. Methods for a quantitative analysis of galaxy halos will be
described in Sect. 8.2.

The first attempt at detecting this galaxy-galaxy lensing effect was reported by Tyson et al. (1984),
but the use of photographic plates and the relatively poor seeing prevented them from observing a galaxy-
galaxy lensing signal. The first detection was reported by Brainerd et al. (1996), and as will be described
in Sect. 8.3, several further observational results have been derived.

Gravitational light deflection can also be used to study the dark matter halos of galaxies in clusters. The
potential influence of the environment on the halo properties of galaxies can provide a strong hint on the
formation and lifetimes of clusters. One might expect that galaxy halos are tidally stripped in clusters and
therefore physically smaller than those of field galaxies. In Sect. 8.4, we consider galaxy-galaxy lensing in
clusters, and report on some first results.

Intermediate in mass between clusters and galaxies are groups of galaxies. With a characteristic ve-
locity dispersion of∼ 300km/s, they are also not massive enough to be detected individually with weak
lensing techniques. For them, the foregoing remarks also apply: As galaxies, groups can be statistically
superposed to investigate the statistical properties of their mass profile. Hoekstra et al. (2000b) describe a
first application of this technique, finding a highly significant shear signal in a sample of 59 groups detected
by spectroscopic methods, which yields an average velocity dispersion of∼ 320km/s and a mass-to-light
ratio of∼ 250h−1.

8.2 The Theory of Galaxy-Galaxy Lensing

A light bundle from a distant galaxy is affected by the tidal field of many foreground galaxies. Therefore,
in order to describe the image distortion, the whole population of foreground galaxies has to be taken into
account. But first we shall consider the simple case that the image shape is affected (mainly) by a single
foreground galaxy. Throughout this section we assume that the shear is weak, so that we can replace (135,
page 40) by

ε(s) = ε− γ . (340)
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Consider an axi-symmetric mass distribution for the foreground galaxy, and background images at separa-
tion θ from its centre. The expectation value of the image ellipticity then is the shear atθ, which is oriented
tangentially. Ifp(ε) andp(s)(ε(s)) denote the probability distributions of the image and source ellipticities,
then according to (340),

p(ε) = p(s)(ε− γ) = p(s)(ε)− γα
∂

∂εα
p(s)(ε) , (341)

where the second equality applies for|γ| � 1. If ϕ is the angle between the major axis of the image ellipse
and the line connecting source and lens centre, one finds the probability distribution ofϕ by integrating
(341) over the modulus ofε,

p(ϕ) =
∫

d|ε| |ε| p(ε) =
1
2π
− γt cos(2ϕ)

1
2π

∫
d|ε| p(s)(ε) , (342)

whereϕ ranges within[0,2π]. Owing to the symmetry of the problem, we can restrictϕ to within 0 and
π/2, so that the probability distribution becomes

p(ϕ) =
2
π

[
1− γt

〈
1

ε(s)

〉
cos(2ϕ)

]
, (343)

i.e., the probability distribution is skewed towards values larger thanπ/4, showing preferentially a tangen-
tial alignment.

Lensing by additional foreground galaxies close to the line-of-sight to the background galaxy does
not substantially change the probability distribution (343). First of all, since we assume weak lensing
throughout, the effective shear acting on a light bundle can well be approximated by the sum of the shear
contributions from the individual foreground galaxies. This follows either from the linearity of the prop-
agation equation in the mass distribution, or from the lowest-order approximation of multiple-deflection
gravitational lensing (e.g., Blandford & Narayan 1986; Seitz & Schneider 1992). Second, the additional
lensing galaxies are placed at random angles around the line-of-sight, so that the expectation value of their
combined shear averages to zero. Whereas they slightly increase the dispersion of the observed image
ellipticities, this increase is negligible since the dispersion of the intrinsic ellipticity distribution is by far
the dominant effect. However, if the lens galaxy under consideration is part of a galaxy concentration,
such as a cluster, the surrounding galaxies are not isotropically distributed, and the foregoing argument is
invalid. We shall consider galaxy-galaxy lensing in clusters in Sect. 8.4, and assume here that the galaxies
are generally isolated.

For an ensemble of foreground-background pairs of galaxies, the probability distribution for the angle
ϕ simply reads

p(ϕ) =
2
π

[
1−〈γt〉

〈
1

ε(s)

〉
cos(2ϕ)

]
, (344)

where〈γt〉 is the mean tangential shear of all pairs considered. The functionp(ϕ) is an observable. A
significant deviation from a uniform distribution signals the presence of galaxy-galaxy lensing. To obtain
quantitative information on the galaxy halos from the amplitude of the cosine term, one needs to know
〈1/ε(s)〉. It can directly be derived from observations because the weak shear assumed here does not
significantly change this average between source and image ellipticities, from a parameterised relation
between observable galaxy properties, and from the mean shear〈γt〉. Although in principle fine binning
in galaxy properties (like colour, redshift, luminosity, morphology) and angular separation of foreground-
background pairs is possible in order to probe the shear as a function of angular distance from a well-defined
set of foreground galaxies and thus to obtain its radial mass profile without any parameterisation, this
approach is currently unfeasible owing to the relatively small fields across which observations of sufficient
image quality are available.

A convenient parameterisation of the mass profile is the truncated isothermal sphere with surface mass
density

Σ(ξ) =
σ2

v

2Gξ

(
1− ξ√

s2 + ξ2

)
, (345)
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wheres is the truncation radius. This is a special case of the mass distribution (104, page 33). Brainerd
et al. (1996) showed that this mass profile corresponds to a physically realisable dark-matter particle
distribution.15 The velocity dispersion is assumed to scale with luminosity according to (68, page 21),
which is supported by observations. A similar scaling ofs with luminosityL or velocity dispersionσv is
also assumed,

s= s∗

(
σv

σv,∗

)2

= s∗

(
L
L∗

)2/α
, (346)

where the choice of the exponent is largely arbitrary. The scaling in (346) is such that the ratio of truncation
radius and Einstein radius at fixed redshift is independent ofL. If, in addition,α = 4, the total mass-to-light
ratio is identical for all galaxies. The fiducial luminosityL∗ may depend on redshift. For instance, if the
galaxies evolve passively, their mass properties are unaffected, but aging of the stellar population cause
them to become fainter with decreasing redshift. This effect may be important for very deep observations,
such as the Hubble Deep Field (Hudson et al. 1998), in which the distribution of lens galaxies extends to
high redshifts.

The luminosityL of a lens galaxy can be inferred from the observed flux and an assumed redshift. Since
the scaling relation (68) applies to the luminosity measured in a particular waveband, the calculation of the
luminosity from the apparent magnitude in a specified filter needs to account for the k-correction. If data
are available in a single waveband only, an approximate average k-correction relation has to be chosen. For
multi-colour data, the k-correction can be estimated for individual galaxies more reliably. In any case, one
assumes a relation between luminosity, apparent magnitude, and redshift,

L = L(m,z) . (347)

The final aspect to be discussed here is the redshift of the galaxies. Given that a galaxy-galaxy analysis
involves at least several hundred foreground galaxies, and even more background galaxies, one cannot
expect that all of them have spectroscopically determined redshifts. In a more favourable situation, multi-
colour data are given, from which a redshift estimate can be obtained, using the photometric redshift
method (e.g., Connolly et al. 1995; Gwyn & Hartwick 1996; Hogg et al. 1998). These redshift estimates
are characteristically accurate to∆z∼ 0.1, depending on the photometric accuracy and the number of
filter bands in which photometric data are measured. For a single waveband only, one can still obtain
a redshift estimate, but a quite unprecise one. One then has to use the redshift distribution of galaxies
at that particular magnitude, obtained from spectroscopic or multi-colour redshift surveys in other fields.
Hence, one assumes that the redshift probability distributionpz(z;m) as a function of magnitudes is known
sufficiently accurately.

Suppose for a moment that all galaxy redshifts were known. Then, one can predict the effective shear
for each galaxy, caused by all the other galaxies around it,

γi = ∑
j

γi j (~θi−~θ j ,zi ,zj ,mj) , (348)

whereγi j is the shear produced by thej-th galaxy on thei-th galaxy image, which depends on the angular
separation and the mass properties of thej-th galaxy. From its magnitude and redshift, the luminosity can
be inferred from (347), which fixesσv and the halo sizes through the scaling relations (68) and (346).
Of course, forzi ≤ zj , γi j = 0. Although the sum in (348) should in principle extend over the whole sky,
the lensing effect of all foreground galaxies with angular separation larger than someθmax will average to
zero. Therefore, the sum can be restricted to separations≤ θmax. We shall discuss the value ofθmax further
below.

In the realistic case of unknown redshifts, but known probability distributionpz(z;m), the shearγi

cannot be determined. However, by averaging (348) overpz(z;m), the mean and dispersion,〈γi〉 andσγ,i ,
of the shear for thei-th galaxy can be calculated. Instead of performing the high-dimensional integration
explicitly, this averaging can conveniently be done by a Monte-Carlo integration. One can generate multiple
realisations of the redshift distribution by randomly drawing redshifts from the probability densitypz(z;m).
For each realisation, theγi can be calculated from (348). By averaging over the realisations, the mean〈γi〉
and dispersionσγ,i of γi can be estimated.

15It is physically realisable in the sense that there exists an isotropic, non-negative particle distribution function which gives rise to
a spherical density distribution corresponding to (345).
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8.3 Results

The first attempt at detecting galaxy-galaxy lensing was made by Tyson et al. (1984). They analysed a
deep photographic survey consisting of 35 prime-focus plates with the 4-meter Mayall Telescope at Kitt
Peak. An area of 36 (arc min.)2 on each plate was digitised. After object detection,∼ 12,000 ‘foreground’
and∼ 47,000 ‘background’ galaxies were selected by their magnitudes, such that the faintest object in
the ‘foreground’ class was one magnitude brighter than the brightest ‘background’ galaxy. This approach
assumes that the apparent magnitude of an object provides a good indication for its redshift, which seems
to be valid, although the redshift distributions of ‘foreground’ and ‘background’ galaxies will substantially
overlap. There were∼ 28,000 foreground-background pairs with∆θ≤ 63′′ in their sample, but no signifi-
cant tangential alignment could be measured. By comparing their observational results with Monte-Carlo
simulations, Tyson et al. concluded that the characteristic velocity dispersion of a foreground galaxy in
their sample must be smaller than about 120kms−1. This limit was later revised upwards to∼ 230kms−1

by Kovner & Milgrom (1987) who noted that the assumption made in Tyson et al.’s analysis that all back-
ground galaxies are at infinite distance (i.e.,Dds/Ds = 1) was critical. This upper limit is fully compatible
with our knowledge of galaxy masses.

This null-detection of galaxy-galaxy lensing in a very large sample of objects apparently discouraged
other attempts for about a decade. After the first weak-lensing results on clusters became available, it
was obvious that this method requires deep data with superb image quality. In particular, the non-linearity
of photographic plates and mediocre seeing conditions are probably fatal to the detection of this effect,
owing to its smallness. The shear at 5′′ from anL∗ galaxy with σv = 160kms−1 is less than 5%, and
pairs with smaller separations are very difficult to investigate as the bright galaxy will affect the ellipticity
measurement of its close neighbour on ground-based images.

Using a single 9.6′×9.6′ blank field, with a total exposure time of nearly seven hours on the 5-meter
Hale Telescope on Mount Palomar, Brainerd et al. (1996) reported the first detection of galaxy-galaxy
lensing. Their co-added image had a seeing of 0.87′′ at FWHM, and the 97% completeness limit was
r = 26. They considered ‘foreground’ galaxies in the magnitude range 20≤ r ≤ 23, and several fainter
bins for defining the ‘background’ population, and investigated the distribution functionp(ϕ) for pairs
with separation 5′′ ≤ ∆θ ≤ 34′′. The most significant deviation ofp(ϕ) from a flat distribution occurs for
‘background’ galaxies in the range 23≤ r ≤ 24. For fainter (and thus smaller) galaxies, the accuracy of the
shape determination deteriorates, as Brainerd et al. explicitly show. The number of ‘foreground’ galaxies,
‘background’ galaxies, and pairs, isNf = 439,Nb = 506, andNpairs = 3202. The binned distribution for
this ‘background’ sample is shown in Fig. 30, together with a fit according to (344). A Kolmogorov-
Smirnov test rejects a uniform distribution ofp(ϕ) at the 99.9% level, thus providing the first detection of
galaxy-galaxy lensing.

Brainerd et al. performed a large number of tests to check for possible systematic errors, including null
tests (e.g., replacing the positions of ‘foreground’ galaxies by random points, or stars), splitting the whole
sample into various subsamples (e.g., inner part vs. outer part of the image, upper half vs. lower half etc.),
and these tests were passed satisfactorily. Also a slight PSF anisotropy in the data, or contamination of the
ellipticity measurement of faint galaxies by brighter neighbouring galaxies, cannot explain the observed
relative alignment, as tested with extensive simulations, so that the detection must be considered real.

Brainerd et al. then quantitatively analysed their observed alignment, using the model outlined in
Sect. 8.2, withα = 4. The predictions of the model were inferred from Monte-Carlo simulations, in
which galaxies were randomly distributed with the observed number density, and redshifts were assigned
according to a probability distributionpz(z;m), for which they used a slight extrapolation from existing
redshift surveys, together with a simple prescription for the k-correction in (347) to assign luminosities to
the galaxies. The ellipticity for each background galaxy image was then obtained by randomly drawing
an intrinsic ellipticity, adding shear according to (348). The simulated probability distributionp(ϕ) was
discretised into several bins in angular separation∆θ, and compared to the observed orientation distribution,
usingχ2-minimisation with respect to the model parametersσv,∗ ands∗. The result of this analysis is shown
in Fig. 31. The shape of theχ2-contours is characteristic in that they form a valley which is relatively
narrow in theσv,∗-direction, but extends very far out into thes∗-direction. Thus, the velocity dispersion
σv,∗ can significantly be constrained with these observations, while only a lower limit ons∗ can be derived.
Formal 90% confidence limits onσv,∗ are∼ 100kms−1 and∼ 210kms−1, with a best-fitting value of about

120



0
�

.2� .4
�

.6� .8� 1� 1.2 1.4 1.6

.55

.6

.65

.7

.75

.8

(a) 23 < rs < 24

φ

P
φ(

� φ)

Figure 30: The probability distributionp(ϕ) for the 3202 foreground-background pairs (20≤ r ≤ 23 and
23≤ r ≤ 24, respectively) with 5′′ ≤ ∆θ≤ 34′′ in the sample used by Brainerd et al. (1996), together with
the best fit according to (344). The observed distribution is incompatible with a flat distribution (dotted
line) at a high confidence level of 99.9% (from Brainerd et al.).

160kms−1, whereas the 1- and 2-σ lower limits ons∗ are 25h−1 kpc and∼ 10h−1 kpc, respectively.
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Figure 31: Contours of constantχ2 in theV∗–hs∗ parameter plane, whereV∗ =
√

2σv,∗, obtained from a
comparison of the observed tangential alignment〈γt〉 with the distribution found in Monte-Carlo simula-
tions. The solid contours range from 0.8 (innermost) to 8 per degree of freedom; the dotted curve displays
χ2 = 1 per degree of freedom. (from Brainerd et al. 1996).

Finally, Brainerd et al. studied the dependence of the lensing signal〈γt〉 on the colour of their ‘back-
ground’ sample, by splitting it into a red and a blue half. The lensing signal of the former is compatible with
zero on all scales, while the blue sample reveals a strong signal which decreases with angular separation as
expected. This result is in accordance with that discussed in Sect. 5.5.3, where the blue galaxies showed a
stronger lensing signal as well, indicating that their redshift distribution extends to larger distances.

We have discussed the work of Brainerd et al. (1996) in some detail since it provided the first detection
of galaxy-galaxy lensing, and since it was the only one obtained from the ground until recently. Also, their
careful analysis exemplifies the difficulties in deriving a convincing result.

Griffiths et al. (1996) analysed the images from theHubble Space TelescopeMedium Deep Survey
(MDS) in terms of galaxy-galaxy lensing. The MDS is an imaging survey, using parallel data obtained
with the WFPC2 camera on-board HST. They identified 1600 ‘foreground’ (15< I < 22) and 14000 ‘back-
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ground’ (22< I < 26) galaxies. Owing to the spatial resolution of the HST, a morphological classification
of the foreground galaxies could be performed, and spiral and elliptical galaxies could separately be anal-
ysed. They considered the mean orientation angle〈ϕ〉 = π/4+ π−1〈γt〉〈1/|ε(s)|〉 as a statistical variable,
and scaled the truncation radius in their mass models in proportion to the half-light radius. They found
thatσv,∗ = 220kms−1 andσv,∗ = 160kms−1 are compatible with their shear data for elliptical and spiral
galaxies, respectively. For their sample of elliptical foreground galaxies, they claim that the truncation
radius must be more than ten times the half-light radius to fit their data, and that a de Vaucouleurs mass
profile is excluded. Unfortunately, no significance levels are quoted.

A variant of the method for a quantitative analysis of galaxy-galaxy lensing was developed by Schnei-
der & Rix (1997). Instead of aχ2-analysis of〈γt〉 in angular separation bins, they suggested a maximum-
likelihood analysis, using the individual galaxy images. In their Monte-Carlo approach, the galaxy posi-
tions (and magnitudes) are kept fixed, and only the redshifts of the galaxies are drawn from their respective
probability distributionpz(z;m), as described at the end of Sect. 8.2. The resulting log-likelihood function

`=−∑
i

|εi−〈γi〉|2

ρ2 + σ2
γ,i
−∑

i
ln
[
π(ρ2 + σ2

γ,i)
]
, (349)

whereρ is the dispersion of intrinsic ellipticity distribution, here assumed to be a Gaussian, can then be
maximised with respect to the model parameters, e.g.,σv,∗ ands∗. Extensive simulations demonstrated that
this approach, which utilises all of the information provided by observations, yields an unbiased estimate
of these model parameters. Later, Erben (1997) showed that this remains valid even if the lens galaxies
have elliptical projected mass profiles.

This method was applied to the deep multi-colour imaging data of the Hubble Deep Field (HDF;
Williams et al. 1996) by Hudson et al. (1998), after Dell’Antonio & Tyson (1996) detected a galaxy-
galaxy lensing signal in the HDF on an angular scale of. 5′′. The availability of data in four wavebands
allows an estimate of photometric redshifts, a method demonstrated to be quite reliable by spectroscopy of
HDF galaxies (e.g., Hogg et al. 1998). The accurate redshift estimates, and the depth of the HDF, compen-
sates for the small field-of-view of∼ 5arcmin2. A similar study of the HDF data was carried out by the
Caltech group (see Blandford et al. 1998).

In order to avoid k-corrections, using the multi-colour photometric data to relate all magnitudes to
the rest-frame B-band, Hudson et al. considered lens galaxies with redshiftz. 0.85 only, leaving 208
galaxies. Only such source-lens pairs for which the estimated redshifts differ by at least 0.5 were included
in the analysis, giving about 104 foreground-background pairs. They adopted the same parameterisation
for the lens population as described in Sect. 8.2, except that the depth of the HDF suggests that the fiducial
luminosity L∗ should be allowed to depend on redshift,L∗ ∝ (1+ z)ζ. Assuming no evolution,ζ = 0,
and a Tully-Fisher index of 1/α = 0.35, they foundσv,∗ = (160±30)kms−1. Various control tests were
performed to demonstrate the robustness of this result, and potential systematic effects were shown to be
negligible.

As in the previous studies, halo sizes could not be significantly constrained. The lensing signal is
dominated by spiral galaxies at a redshift ofz∼ 0.6. Comparing the Tully-Fisher relation at this redshift
to the local relation, the lensing results indicate that intermediate-redshift galaxies are fainter than local
spirals by 1±0.6 magnitudes in the B-band, at fixed circular velocity.

Hence, all results reported so far yield compatible values ofσv,∗, but do not allow upper bounds on the
halo size to be set. The flatness of the likelihood surface in thes∗-direction shows that a measurement ofs∗
requires much larger samples than used before. We can understand the insensitivity tos∗ in the published
analyses at least qualitatively. The shear caused by a galaxy at a distance of, say, 100kpc is very small,
of order 1%. This implies that the difference in shear caused by galaxies with truncation radius of 20kpc
ands = 100kpc is very small indeed. In addition, there are typically other galaxies closer to the line-of-
sight to background galaxies which produce a larger shear, making it more difficult to probe the shear of
widely separated foreground galaxies. Hence, to probe the halo size, many more foreground-background
pairs must be considered. In addition, the angular scaleθmax within which pairs are considered needs to be
larger than the angular scale of the truncation radius at typical redshifts of the galaxies, and on the other
hand,θmax should be much smaller than the size of the data field available. Hence, to probe large scales of
the halo, wide-field imaging data are needed.
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There is a related problem which needs to be understood in greater detail. Since galaxies are clustered,
and probably (biased) tracers of an underlying dark matter distribution (e.g., most galaxies may live in
groups), it is not evident whether the shear caused by a galaxy at a spatial separation of, say, 100kpc is
caused mainly by the dark matter halo of the galaxy itself, or rather by the dark-matter halo associated with
the group. Here, numerical simulations of the dark matter may indicate to which degree these two effects
can be separated, and observational strategies for this need to be developed.

In fact, the two points just mentioned were impressively illustrated by a galaxy-galaxy lensing analysis
of early commissioning imaging data from the Sloan Digital Sky Survey (Fischer et al. 1999), covering
225 square degrees. The separation between foreground and background galaxies was based on apparent
magnitude, with an estimated mean redshift of the foreground sample of〈zd〉 ≈ 0.17. Fischer et al. (1999)
used data in three optical filters for their analysis; the number of foreground (background) galaxies in each
filter is∼ 28000 (1.4×106). The galaxy-galaxy lensing signal is seen out to∼ 10′ in all three filters, and the
mean tangential shear in the annulus 10′′ ≤ θ ≤ 10′ is≈ 6×10−4. With an assumed redshift distribution
of foreground and background galaxies, the characteristic velocity dispersion could be estimated to be
σ∗ = 170±20kms−1 at 95% confidence. Even at the large angular separation probed by this data set, no
sign of a cut-off radius of the galaxy halos is seen, and a lower limit ofs∗ ≥ 275h−1kpc can be derived. At
such scales, the shear is probably no longer dominated by the foreground galaxy used as the origin for the
definition of tangential shear, but by neighbouring galaxies and/or dark matter correlated with the galaxy.
Therefore, the results of such a study may best be interpreted as a galaxy-mass correlation function (Kaiser
1992), which brings us back to the issue of biasing discussed in Sect. 6.8. A preliminary analysis presented
in Fischer et al. (1999) yieldsΩ0/b∼ 0.3, if a linear biasing factorb is assumed. At least as important as
the quantitative results from the Sloan Survey is the fact that they demonstrate the enormous potential of
this method – this analysis used about 2% of the imaging data the full Sloan Survey will provide, and did
not yet utilise photometric redshift information which, as mentioned before, will increase the accuracy of
the physical parameters derived.

8.4 Galaxy-Galaxy Lensing in Galaxy Clusters

An interesting extension of the work described above aims at the investigation of the dark-matter halo prop-
erties of galaxies within galaxy clusters. In the hierarchical model for structure formation, clusters grow
by mergers of less massive halos, which by themselves formed by merging of even smaller substructures.
Tidal forces in clusters, possible ram-pressure stripping by the intra-cluster medium, and close encoun-
ters during the formation process, may affect the halos of galaxies, most of which presumably formed at
an early epoch. Therefore, it is unclear at present whether the halo properties of galaxies in clusters are
similar to those of field galaxies.

Galaxy-galaxy lensing offers an exciting opportunity to probe the dark galaxy halos in clusters. There
are several differences between the investigation of field and of cluster galaxies. First, the number of
massive galaxies in a cluster is fairly small, so the statistics for a single cluster will be limited. This can be
compensated by investigating several clusters simultaneously. Second, the image distortion is determined
by the reduced shear,g = γ/(1− κ). For field galaxies, where the shear and the surface mass density
is small, one can setg ≈ γ, but this approximation no longer holds for galaxies in clusters, where the
cluster providesκ substantially above zero. This implies that one needs to know the mass distribution of
the cluster before the statistical properties of the massive galaxy halos can be investigated. On the other
hand, it magnifies the lensing signal from the galaxies, so that fewer cluster galaxies are needed to derive
significant lensing results compared to field galaxies of similar mass. Third, most cluster galaxies are of
early type, and thus theirσv,∗ – and consequently, their lensing effect – is expected to be larger than for
typical field galaxies.

In fact, the lensing effect of individual cluster galaxies can even be seen from strong lensing. Mod-
elling clusters with many strong-lensing constraints (e.g., several arcs, multiple images of background
galaxies), the incorporation of individual cluster galaxies turns out to be necessary (e.g., Kassiola et al.
1992; Wallington et al. 1995; Kneib et al. 1996). However, the resulting constraints are relevant only for a
few cluster galaxies which happen to be close to the strong-lensing features, and mainly concern the mass
of these galaxies within∼ 10h−1 kpc.

The theory of galaxy-galaxy lensing in clusters was developed in Natarajan & Kneib (1997) and Geiger
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& Schneider (1998), using several different approaches. The simplest possibility is related to the aperture
mass method discussed in Sect. 5.3.1. Measuring the tangential shear within an annulus around each cluster
galaxy, perhaps including a weight function, permits a measurement of the aperture mass, and thus to
constrain the parameters of a mass model for the galaxies. Provided the scale of the aperture is sufficiently
small, the tidal field of the cluster averages out to first order, and the local influence of the cluster occurs
through the local surface mass densityκ. In particular, the scale of the aperture should be small enough in
order to exclude neighbouring cluster galaxies.

A more sophisticated analysis starts from a mass model of the cluster, as obtained by one of the re-
construction techniques discussed in Sect. 5, or by a parameterised mass model constructed from strong-
lensing constraints. Then, parameterised galaxy models are added, again with a prescription similar to that
of Sect. 8.2, and simultaneously the mass model of the cluster is multiplied by the relative mass fraction
in the smoothly distributed cluster mass (compared to the total mass). In other words, the mass added by
inserting galaxies into the cluster is subtracted from the smooth density profile. From the observed galaxy
ellipticities, a likelihood function can be defined and maximised with respect to the parameters (σv,∗, s∗) of
the galaxy model.

Natarajan et al. (1998) applied this method to WFPC2 images of the cluster AC 114 (zd = 0.31).
They concluded that most of the mass of a fiducialL∗ cluster galaxy is contained in a radius of∼ 15kpc,
indicating that the halo size of galaxies in this cluster is smaller than that of field galaxies.

Using their HST mosaic image, Hoekstra et al. (2000a) also detected galaxy-galaxy lensing in the
high-redshift cluster MS1054−03 atz = 0.83. Avoiding the densest part of the cluster in selecting their
foreground galaxies, they investigated the average tangential shear around them, after subtracting the shear
from the cluster as determined from the mass reconstruction (see Sect. 5.3, page 64), also using the scaling
(68). The galaxy-galaxy lensing signal is seen at the 99.8% confidence level. Using the redshift distribution
of background galaxies as determined from photometric redshift estimates in the Hubble Deep Fields, their
lensing signal yieldsσ∗ ≈ 200±35kms−1 for the cluster galaxies. Not unexpectedly, this value is larger
than those obtained from field galaxies, since the cluster preferentially hosts early-type galaxies for which
σ∗ is known to be larger than for spirals. It is indeed encouraging that this method is able to measure the
mass of high-redshift galaxies.

Once the mass contained in the cluster galaxies is a significant fraction of the total mass of the cluster,
this method was found to break down, or give strongly biased results. Geiger & Schneider (1999) modified
this approach by performing a maximum-likelihood cluster mass reconstruction for each parameter set of
the cluster galaxies, allowing the determination of the best representation of the global underlying cluster
component that is consistent with the presence of the cluster galaxies and the observed image ellipticities
of background galaxies.

This method was then applied to the WFPC-2 image of the cluster Cl0939+4713, already described in
Sect. 5.4. The entropy-regularised maximum-likelihood mass reconstruction of the cluster is very similar
to the one shown in Fig. 14 (page 70), except that the cluster centre is much better resolved, with a peak
very close to the observed strong lensing features (Trager et al. 1997). Cluster galaxies were selected
according to their magnitudes, and divided by morphology into two subsamples, viz. early-type galaxies
and spirals. In Fig. 32 we show the likelihood contours in thes∗–σv,∗ plane, for both subsets of cluster
galaxies. Whereas there is no statistically significant detection of lensing by spiral galaxies, the lensing
effect of early-type galaxies is clearly detected. Although no firm upper limit of the halo sizes∗ can be
derived from this analysis owing to the small angular field of the image (the maximum of the likelihood
function occurs at 8h−1kpc, and a 1-σ upper limit would be∼ 50h−1kpc), the contours ‘close’ at smaller
values ofs∗ compared to the results obtained from field galaxies. By statistically combining several cluster
images, a significant upper limit on the halo size can be expected.

The maximum-likelihood estimate ofσ∗ for the early-type galaxies is∼ 200kms−1, in agreement with
that found by Hoekstra et al. (2000a).

It should be noted that the results presented above still contain some uncertainties, most notably the
unknown redshift distribution of the background galaxies and the mass-sheet degeneracy, which becomes
particularly severe owing to the small field-of-view of WFPC2. Changing the assumed redshift distribution
and the scaling parameterλ in (217, page 60) shifts the likelihood contours in Fig. 32 up or down, i.e.,
the determination ofσv,∗ is affected. As for galaxy-galaxy lensing of field galaxies, the accuracy can be
increased by using photometric redshift estimates. Similarly, the allowed range of the mass-sheet transfor-
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Figure 32: Results of applying the entropy-regularised maximum-likelihood method for galaxy-galaxy
lensing to the WFPC2 image of the cluster Cl0939+4713. The upper and lower panels correspond to
early-type and spiral galaxies, respectively. The solid lines are confidence contours at 68.3%, 95.4% and
99.7%, and the cross marks the maximum of the likelihood function. Dashed lines correspond to galaxy
models with equal aperture massM∗(< 8h−1kpc) = (0.1,0.5,1.0)× 1011h−1M�. Similarly, the dotted
lines connect models of constant total mass for anL∗-galaxy, ofM∗ = (0.1,0.5,1.0,5.0,10)×1011h−1M�,
which corresponds to a mass fraction contained in galaxies of(0.15,0.75,1.5,7.5,15)%, respectively (from
Geiger & Schneider 1999).

mation can be constrained by combining these small-scale images with larger scale ground-based images,
or, if possible, by using magnification information to break the degeneracy. Certainly, these improvements
of the method will be a field of active research in the immediate future.
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9 The Impact of Weak Gravitational Light Deflection on the Mi-
crowave Background Radiation

9.1 Introduction

The Cosmic Microwave Background originated in the hot phase after the Big Bang, when photons were
created in thermal equilibrium with electromagnetically interacting particles. While the Universe expanded
and cooled, the photons remained in thermal equilibrium until the temperature was sufficiently low for
electrons to combine with the newly formed nuclei of mainly hydrogen and helium. While the formation
of atoms proceeded, the photons decoupled from the matter due to the rapidly decreasing abundance of
charged matter. Approximately 300,000 years after the Big Bang, corresponding to a redshift ofz≈ 1,000,
the universe became transparent for the radiation, which retained the Planck spectrum it had acquired while
it was in thermal equilibrium, and the temperature decreased in proportion with the scale factor as the
Universe expanded. This relic radiation, cooled toT = 2.73K, forms the Cosmic Microwave Background
(hereafter CMB). Penzias & Wilson (1965) detected it as an “excess antenna temperature”, and Fixsen et al.
(1996) used the COBE-FIRAS instrument to prove its perfect black-body spectrum.

Had the Universe been ideally homogeneous and isotropic, the CMB would have the intensity of black-
body radiation at 2.73K in all directions on the sky, and would thus be featureless. Density perturbations in
the early Universe, however, imprinted their signature on the CMB through various mechanisms, which are
thoroughly summarised and discussed in Hu (1995). Photons in potential wells at the time of decoupling
had to climb out, thus losing energy and becoming slightly cooler than the average CMB. This effect,
now called theSachs-Wolfe effectwas originally studied by Sachs & Wolfe (1967), who found that the
temperature anisotropies in the CMB trace the potential fluctuations on the ‘surface’ of decoupling. CMB
fluctuations were first detected by the COBE-DMR experiment (Smoot et al. 1992) and subsequently
confirmed by numerous ground-based and balloon-borne experiments (see Smoot 1997 for a review).

The interplay between gravity and radiation pressure in perturbations of the cosmic ‘fluid’ before re-
combination gave rise to another important effect. Radiation pressure is only effective in perturbations
smaller than the horizon. Upon entering the horizon, radiation pressure provides a restoring force against
gravity, leading to acoustic oscillations in the tightly coupled fluid of photons and charged particles, which
cease only when radiation pressure drops while radiation decouples. Therefore, for each physical pertur-
bation scale, the acoustic oscillations set in at the same time, i.e. when the horizon size becomes equal the
perturbation size, and they end at the same time, i.e. when radiation decouples. At fixed physical scale,
these oscillations are therefore coherent, and they show up as distinct peaks (the so-calledDoppler peaks)
and troughs in the power spectrum of the CMB fluctuations. Perturbations large enough to enter the horizon
after decoupling never experience these oscillations. Going through the CMB power spectrum from large
to small scales, there should therefore be a ‘first’ Doppler peak at a location determined by the horizon
scale at the time of decoupling.

A third important effect sets in on the smallest scales. If a density perturbation is small enough, ra-
diation pressure can blow it apart because its self-gravity is too weak. This effect is comparable to the
Jeans’ criterion for the minimal mass required for a pressurised perturbation to collapse. It amounts to a
suppression of small-scale fluctuations and is calledSilk damping, leading to an exponential decline at the
small-scale end of the CMB fluctuation power spectrum.

Other effects arise between the ‘surface’ of decoupling and the observer. Rees & Sciama (1968) pointed
out that large non-linear density perturbations between the last-scattering surface and us can lead to a dis-
tinct effect if those fluctuations change while the photons traverse them. Falling into the potential wells,
they experience a stronger blue-shift than climbing out of them because expansion makes the wells shal-
lower in the meantime, thus giving rise to a net blue-shift of photons. Later, this effect was re-examined in
the framework of the ‘Swiss-Cheese’ (Dyer 1976) and ‘vacuole’ (Nottale 1984) models of density pertur-
bations in an expanding background space-time. The masses of such perturbations have to be very large for
this effect to become larger than the Sunyaev-Zel’dovich effect16 due to the hot gas contained in them; Dyer

16The (thermal) Sunyaev-Zel’dovich effect is due to Compton-upscattering of CMB photons by thermal electrons in the hot plasma
in galaxy clusters. Since the temperature of the electrons is much higher than that of the photons, CMB photons are effectively
re-distributed towards higher energies. At frequencies lower than≈ 272GHz, the CMB intensity is thus decreased towards galaxy
clusters; in effect, they cast shadows on the surface of the CMB.

126



(1976) estimated that masses beyond 1019M� would be necessary, a value four to five orders of magnitude
larger than that of typical galaxy clusters.

The gravitational lens effect of galaxy clusters moving transverse to the line-of-sight was investigated
by Birkinshaw & Gull (1983) who found that a cluster with∼ 1015M� and a transverse velocity of∼
6000kms−1 should change the CMB temperature by∼ 10−4K. Later, Gurvits & Mitrofanov (1986) re-
investigated this effect and found it to be about an order of magnitude smaller.

Cosmic strings as another class of rapidly moving gravitational lenses were studied by Kaiser & Steb-
bins (1984) who discussed that they would give rise to step-like features in the CMB temperature pattern.

9.2 Weak Lensing of the CMB

The introduction shows that the CMB is expected to display distinct features in a hierarchical model of
structure formation. The CMB power spectrum should be featureless on large scales, then exhibit pro-
nounced Doppler peaks at scales smaller than the horizon at the time of decoupling, and an exponential
decrease due to Silk damping at the small-scale end. We now turn to investigate whether and how gravita-
tional lensing by large-scale structures can alter these features.

The literature on the subject is rich (see Blanchard & Schneider 1987, Cayón et al. 1993b, Caýon et al.
1993a, Cole & Efstathiou 1989, Fukugita et al. 1992, Kashlinsky 1988, Linder 1988, Linder 1990a, Linder
1990b, Mart́ınez-Gonźalez et al. 1990, Sasaki 1989, Tomita 1989, Watanabe & Tomita 1991), but different
authors have sometimes arrived at contradicting conclusions. Perhaps the most elegant way of studying
weak lensing of the CMB is the power-spectrum approach, which was most recently advocated by Seljak
(1994, 1996).

We should like to start our discussion by clearly stating two facts concerning the effect of lensing on
fluctuations in the Cosmic Microwave Background which clarify and resolve several apparently contradic-
tory discussions and results in the literature.

1. If the CMB was completely isotropic, gravitational lensing would have no effect whatsoever because
it conserves surface brightness.In this case, lensing would only magnify certain patches in the
sky and de-magnify others, but since it would not alter the surface brightness in the magnified or
de-magnified patches, the temperature remained unaffected. An analogy would be observers facing
an infinitely extended homogeneously coloured wall, seeing some parts of it enlarged and others
shrunk. Regardless of the magnification, they would see the same colour everywhere, and so they
would notice nothing despite the magnification.

2. It is not the absolute value of the light deflection due to lensing which matters, but the relative de-
flection of neighbouring light rays.Imagine a model universe in which all light rays are isotropically
deflected by the same arbitrary amount. The pattern of CMB anisotropies seen by an observer would
then be coherently shifted relative to the intrinsic pattern, but remain unchanged otherwise. It is thus
merely thedispersionof deflection angles what is relevant for the impact of lensing on the observed
CMB fluctuation pattern.

9.3 CMB Temperature Fluctuations

In the absence of any lensing effects, we observe at the sky position~θ the intrinsic CMB temperatureT(~θ).
There are fluctuations∆T(~θ) in the CMB temperature about its average value〈T〉= 2.73K. We abbreviate
the relative temperature fluctuations by

∆T(~θ)
〈T〉

≡ τ(~θ) (350)

in the following. They can statistically be described by their angular auto-correlation function

ξT(φ) =
〈

τ(~θ)τ(~θ +~φ)
〉
, (351)

with the average extending over all positions~θ. Due to statistical isotropy,ξT(φ) depends neither on the
positionθ nor on the direction of~φ, but only on the absolute separationφ of the correlated points.
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Commonly, CMB temperature fluctuations are also described in terms of the coefficientsalm of an
expansion into spherical harmonics,

τ(θ,φ) =
∞

∑
l=0

l

∑
m=−l

almYm
l (θ,φ) , (352)

and the averaged expansion coefficients constitute the angular power spectrumCl of the CMB fluctuations,

Cl =
〈
|alm|2

〉
. (353)

It can then be shown that the correlation functionξT(φ) is related to the power-spectrum coefficientsCl

through

Cl =
∫ π

0
dφ sin(φ)Pl (cosφ)ξT(φ) , (354)

with the Legendre functionsPl (cosφ).

9.4 Auto-Correlation Function of the Gravitationally Lensed CMB

9.4.1 Definitions

If there are any density inhomogeneities along the line-of-sight towards the last-scattering surface atz≈
1,000 (the ‘source plane’ of the CMB), a light ray starting into direction~θ at the observer will intercept the
last-scattering surface at the deflected position

~β =~θ−~α(~θ) , (355)

where~α(~θ) is the (position-dependent) deflection angle experienced by the light ray. We will therefore
observe, at position~θ, the temperature of the CMB at position~β, or

T(~β)≡ T ′(~θ) = T[~θ−~α(~θ)] . (356)

The intrinsic temperature autocorrelation function is thus changed by lensing to

ξ′T(φ) =
〈

τ[~θ−α(~θ)]τ[(~θ +~φ)−~α(~θ +~φ)]
〉
. (357)

For simplicity of notation, we further abbreviate~α(~θ)≡~α and~α(~θ +~φ)≡~α′ in the following.

9.4.2 Evaluation

In this section we evaluate the modified correlation function (357) and quantify the lensing effects. For this
purpose, it is convenient to decompose the relative temperature fluctuationτ(~θ) into Fourier modes,

τ(~θ) =
∫

d2~l
(2π)2 τ̂(~l) exp(i~l~θ) . (358)

The expansion ofτ(~θ) into Fourier modes rather than into spherical harmonics is permissible because we
do not expect any weak-lensing effects on large angular scales, so that we can considerT(~θ) on a plane
locally tangential to the sky rather than on a sphere.

We insert the Fourier decomposition (358) into the expression for the correlation function (357) and
perform the average. We need to average over ensembles and over the random angle between the wave
vector~l of the temperature modes and the angular separation~φ of the correlated points. The ensemble
average corresponds to averaging over realisations of the CMB temperature fluctuations in a sample of
universes or, since we focus on small scales, over a large number of disconnected regions on the sky. This
average introduces the CMB fluctuation spectrumPT(l), which is defined by〈

τ̂(~l) τ̂∗(~l ′)
〉
≡ (2π)2 δ(2)(~l −~l ′)PT(l) . (359)
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Averaging over the angle between~l and the position angle~φ gives rise to the zeroth-order Bessel function
of the first kind, J0(x). These manipulations leave eq. (357) in the form

ξ′T(φ) =
∫ ∞

0

ldl
2π

PT(l)
〈

exp
[
i~l
(
~α−~α′

)]〉
J0(lφ) . (360)

The average over the exponential in eq. (360) remains to be performed. To do so, we first expand the
exponential into a power series, 〈

exp(i~l δ~α)
〉

=
∞

∑
j=0

〈(i~l δ~α) j〉
j!

, (361)

whereδ~α ≡~α−~α′ is the deflection-angle difference between neighbouring light rays with initial angular
separation~φ. We now assume that the deflection angles are Gaussian random fields. This is reasonable
because (i) deflection angles are due to Gaussian random fluctuations in the density-contrast field as long
as the fluctuations evolve linearly, and (ii) the assumption of linear evolution holds well for redshifts where
most of the deflection towards the last-scattering surface occurs. Of course, this makes use of the commonly
held view that the initial density fluctuations are of Gaussian nature. Under this condition, the odd moments
in eq. (361) all vanish. It can then be shown that〈

exp(i~l δ~α)
〉

= exp

(
−1

2
l2σ2(φ)

)
(362)

holds exactly, whereσ2(φ) is the dispersion of one component of the deflection-angle,

σ2(φ)≡ 1
2

〈
(~α−~α′)2〉 . (363)

Even if the assumption thatδ~α is a Gaussian random field fails, eq. (362) still holds approximately. To see

this, we note that the CMB power spectrum falls sharply on scalesl & lc≈ (10′Ω1/2
0 )−1. The scalelc is set

by the width of the last-scattering surface at redshiftz∼ 1,000. Smaller-scale fluctuations are efficiently
damped by acoustic oscillations of the coupled photon-baryon fluid. Typical angular scalesl−1 in the CMB
fluctuations are therefore considerably larger than the difference between gravitational deflection angles of
neighbouring rays,δ~α, so that~l(~α−~α′) is a small number. Hence, ignoring fourth-order terms in~lδ~α, the
remaining exponential in (360) can beapproximatedby〈

exp(i~l δ~α)
〉
≈ 1− 1

2
l2σ2(φ)≈ exp

[
−1

2
l2σ2(φ)

]
. (364)

Therefore, the temperature auto-correlation function modified by gravitational lensing can safely be writ-
ten,

ξ′T(φ) =
∫ ∞

0

ldl
2π

PT(l) exp

[
−1

2
l2σ2(φ)

]
J0(lφ) . (365)

This equation shows that the intrinsic temperature-fluctuation power spectrum is convolved with a Gaus-
sian function in wave numberl with dispersionσ−1(φ). The effect of lensing on the CMB temperature
fluctuations is thus to smooth fluctuations on angular scales of order or smaller thanσ(φ).

9.4.3 Alternative Representations

Equation (365) relates the unlensed CMB power spectrum to the lensed temperature auto-correlation func-
tion. Noting thatPT(l) is the Fourier transform ofξT(φ),

PT(l) =
∫

d2φξT(φ) exp(−i~l~φ) = 2π
∫

φdφξT(φ) J0(lφ) , (366)

we can substitute one for the other. Isotropy permitted us to perform the integration over the (random)
angle between~l and~φ in the last step of (366). Inserting (366) into (365) leads to

ξ′T(φ) =
∫

φ′dφ′ ξT(φ′)K(φ,φ′) . (367)
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The kernelK(φ,φ′) is given by

K(φ,φ′) ≡
∫ ∞

0
ldl J0(lφ) J0(lφ′) exp

[
−1

2
l2 σ2(φ)

]
=

1
σ2(φ)

exp

[
−φ2 + φ′2

2σ2(φ)

]
I0

[
φφ′

σ2(φ)

]
, (368)

where I0(x) is the modified zeroth-order Bessel function. Equation (6.663.2) of Gradshteyn & Ryzhik
(1994) was used in the last step. As will be shown below,σ(φ)� φ, so that the argument of I0 is generally
a very large number. Noting that I0(x)≈ (2πx)−1/2exp(x) for x→ ∞, we can write eq. (367) in the form

ξ′T(φ)≈ 1

(2πφ)1/2 σ(φ)

∫
dφ′ φ′1/2 ξT(φ′) exp

[
− (φ−φ′)2

2σ2(φ)

]
. (369)

Like eq. (365), this expression shows that lensing smoothes the intrinsic temperature auto-correlation func-
tion ξT(φ) over angular scales ofσ(φ). Note in particular that, ifσ(φ)→ 0, the exponential in (369) tends
towards a Dirac delta distribution,

lim
σ(φ)→0

1√
2πσ(φ)

exp

[
− (φ−φ′)2

2σ2(φ)

]
= δ(φ−φ′) , (370)

so that the lensed and unlensed temperature auto-correlation functions agree,ξT(φ) = ξ′T(φ).
Likewise, one can Fourier back-transform eq. (365) to obtain a relation between the lensed and the

un-lensed CMB power spectra. To evaluate the resulting integral, it is convenient to assumeσ(φ) = εφ,
with ε being either a constant or a slowly varying function ofφ. This assumption will be justified below.
One then finds

P′T(l ′) =
∫ ∞

0

dl
ε2l

PT(l) exp

(
− l2 + l ′2

2ε2l2

)
I0

(
l ′

ε2l

)
. (371)

For ε� 1, this expression can be simplified to

P′T(l ′) =
∫ ∞

0

dl√
2πεl

PT(l) exp

[
− (l − l ′)2

2ε2l2

]
. (372)

9.5 Deflection-Angle Variance

9.5.1 Auto-Correlation Function of Deflection Angles

We proceed by evaluating the dispersionσ2(φ) of the deflection angles. This is conveniently derived from
the deflection-angle auto-correlation function,

ξ~α(φ)≡
〈
~α~α′

〉
. (373)

Note that the correlation function of~α is the sum of the correlation functions of the components of~α,

ξ~α = 〈~α~α′〉= 〈α1α′1〉+ 〈α2α′2〉= ξα1 + ξα2 . (374)

In terms of the autocorrelation function, the dispersionσ2(φ) can be written

σ2(φ) =
1
2

〈[
~α−~α′

]2〉= ξ~α(0)−ξ~α(φ) . (375)

The deflection angle is given by eq. (258) on page 80 in terms of the Newtonian potentialΦ of the density
fluctuationsδ along the line-of-sight. For lensing of the CMB, the line-of-sight integration extends along
the (unperturbed) light ray from the observer atw = 0 to the last-scattering surface atw(z≈ 1000); see the
derivation in Sect. 6.2 leading to eq. (258, page 80).
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We introduced the effective convergence in (261, page 81) as half the divergence of the deflection angle.
In Fourier space, this equation can be inverted to yield the Fourier transform of the deflection angle,

~̂α(~l) =−2i κ̂eff(~l)

|~l |2
~l . (376)

The deflection-angle power spectrum can therefore be written as

P~α(φ) =
4
l2 Pκ(l) . (377)

The deflection-angle autocorrelation function is obtained from eq. (377) via Fourier transformation.
The result is

ξ~α(φ) =
∫

d2~l
(2π)2 P~α(l) exp(−i~l~φ) = 2π

∫ ∞

0
ldl Pκ(l)

J0(lφ)
(πl)2 , (378)

similar to the form (306, page 96), but here the filter function is no longer a function of theproduct lφ only,
but of l andφ separately,

F(l ,φ) =
J0(lφ)
(πl)2 = φ2 J0(lφ)

(πlφ)2 . (379)

We plot φ−2F(l ,φ) in Fig. 33. For fixedφ, the filter function suppresses small-scale fluctuations, and it
tends towardsF(l ,φ)→ (πl)−2 for l → 0.

Figure 33: The filter functionF(l ,φ) as defined in eq. (379), divided byφ2, is shown as a function of
lφ. Compare Fig. 22 on page 94. For fixedφ, the filter function emphasises large-scale projected density
perturbations (i.e. structures with smalll ).

InsertingPκ(l) into (378), we find the explicit expression for the deflection-angle auto-correlation func-
tion,

ξ~α(φ) =
9H4

0Ω2
0

c4

∫ w

0
dw′W2(w,w′)a−2(w′)

×
∫ ∞

0

dk
2πk

Pδ(k,w′) J0[ fK(w′)kφ] . (380)

Despite the obvious similarity between this result and the magnification auto-correlation function (281 on
page 86), it is worth noting two important differences. First, the weighting of the integrand along the
line-of-sight differs by a factor off 2

K(w′) because we integrate deflection-angle components rather than
the convergence, i.e. first rather than second-order derivatives of the potentialΦ. Consequently, structures
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near the observer are weighted more strongly than for magnification or shear effects. Secondly, the wave-
number integral is weighted byk−1 rather thank, giving most weight to the largest-scale structures. Since
their evolution remains linear up to the present, it is expected that non-linear density evolution is much less
important for lensing of the CMB than it is for cosmic magnification or shear.

9.5.2 Typical Angular Scale

A typical angular scaleφg for the coherence of gravitational light deflection can be obtained as

φg≡

[
1

ξ~α(0)

(∣∣∣∣∂2ξ~α(φ)
∂φ2

∣∣∣∣
φ=0

)]−1/2

. (381)

As eq. (380) shows, the deflection-angle auto-correlation function depends onφ only through the argument
of the Bessel function J0(x). For small argumentsx, the second-order derivative of the J0(x) is approxi-
mately J0′′(x) ≈ −J0(x)/2. Differentiatingξ~α(φ) twice with respect toφ, and comparing the result to the
expression for the magnification auto-correlation functionξµ(φ) in eq. (281, page 86), we find

∂2ξ~α(φ)
∂φ2 ≈−1

2
ξµ(φ) , (382)

and thus

φ2
g≈ 2

ξ~α(0)
ξµ(0)

. (383)

We shall estimateφg later after giving a simple expression forξ~α(φ). The angleφg gives an estimate of the
scale over which gravitational light deflection is coherent.

9.5.3 Special Cases and Qualitative Expectations

We mentioned before that it is less critical here to assume linear density evolution because large-scale
density perturbations dominate in the expression forξ~α(φ). Specialising further to an Einstein-de Sitter
universe so thatw≈ 2c/H0, eq. (380) simplifies to

ξ~α(φ) =
9H4

0

c4 w
∫ 1

0
dy(1−y)2

∫ ∞

0

dk
2πk

P(0)
δ (k) J0(wykφ) , (384)

with wy≡ w′.
Adopting the model spectra for HDM and CDM specified in eq. (284, page 87) and expandingξ~α(φ)

in a power series inφ, we find, to second order inφ,

ξ~α(φ) = A′wk0


3
2π

[
1− φ2

20
(wk0)2

]
for HDM

3
√

3
8

[
1− 3φ2

40
(wk0)2

]
for CDM

. (385)

Combining these expressions with eqs. (383) and (285, page 87), we find for the deflection-angle coherence
scaleφg

φg≈ 3(wk0)−1 . (386)

It is intuitively clear thatφg should be determined by(wk0)−1. Sincek−1
0 is the typical length scale of light-

deflecting density perturbations, it subtends an angle(wk0)−1 at distancew. Thus the coherence angle of
light deflection is given by the angle under which the deflecting density perturbation typically appears. The
source distancew in the case of the CMB is the comoving distance toz= 1,000. In the Einstein-de Sitter
case,w = 2 in units of the Hubble length. Hence, withk−1

0 ≈ 12(Ω0h2)Mpc [cf. eq. (49), page 15], we
havewk0≈ 500. Therefore, the angular scale of the deflection-angle auto-correlation is of order

φg≈ 6×10−3≈ 20′ . (387)
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To lowest order inφ, the deflection-angle dispersion (375) reads

σ2(φ) ∝ (wk0)3 φ2 . (388)

The dispersionσ(φ) is plotted in Fig. 34 for the four cosmological models specified in Tab. 1 on page 78
for linear and non-linear evolution of the density fluctuations.

The behaviour ofσ(φ) expressed in eq. (388) can qualitatively be understood describing the change in
the transverse separation between light paths as a random walk. Consider two light paths separated by an
angleφ such that their comoving transverse separation at distancew is wφ. Let k−1 be the typical scale of
a potential fluctuationΦ. We can then distinguish two different cases depending on whetherwφ is larger
or smaller thank−1. If wφ > k−1, the transverse separation between the light paths is much larger than the
typical potential fluctuations, and their deflection will be incoherent. It will be coherent in the opposite
case, i.e. ifwφ< k−1.

When the light paths are coherently scattered passing a potential fluctuation, their angular separation
changes byδφ1 ≈ wφ∇⊥(2k−1∇⊥Φ/c2), which is the change in the deflection angle acrosswφ. If we
replace the gradients by the inverse of the typical scale,k, we haveδφ1≈ 2wφkΦ/c2. Along a distancew,
there areN ≈ kw such potential fluctuations, so that the total change in angular separation is expected to
beδφ≈ N1/2δφ1.

In case of incoherent scattering, the total deflection of each light path is expected to beδφ ≈
N1/2 (2k−1∇⊥Φ/c2)≈ N1/22Φ/c2, independent ofφ. Therefore,

σ2(φ)≈
{

Nδφ2
1≈ (2Φ/c2)2 (wk)3 φ2 for φ< (wk)−1

N(2Φ/c2)2≈ (2Φ/c2)2 (wk) for φ> (wk)−1 . (389)

This illustrates that the dependence ofσ2(φ) on(wk)3 φ2 for smallφ is merely a consequence of the random
coherent scattering of neighbouring light rays at potential fluctuations. For largeφ, σ(φ) becomes constant,
and soσ(φ)φ−1→ 0. As Fig. 34 shows, the dispersionσ(φ) increases linearly withφ for smallφ and flattens
gradually forφ> φg≈ (10−20)′ as expected, becauseφg divides coherent from incoherent scattering.

9.5.4 Numerical Results

The previous results were obtained by specialising to linear evolution of the density contrast in an Einstein-
de Sitter universe. For arbitrary cosmological parameters, the deflection-angle dispersion has to be com-
puted numerically. We show in Fig. 34 examples forσ(φ) numerically calculated for the four cosmological
models detailed in Tab. 1 on page 78. Two curves are plotted for each model. The somewhat steeper curves
were obtained for linear, the others for non-linear density evolution.

Figure 34 shows that typical values for the deflection-angle variance in cluster-normalised model uni-
verses are of orderσ(φ) ≈ (0.03− 0.1)′ on angular scales betweenφ ≈ (1− 10)′. While the results for
different cosmological parameters are fairly close for cluster-normalised CDM,σ(φ) is larger by about a
factor of two for CDM in an Einstein-de Sitter model normalised toσ8 = 1. For the other cosmological
models, the differences between different choices for the normalisation are less pronounced. The curves
shown in Fig. 34 confirm the qualitative behaviour estimated in the previous section: The varianceσ(φ)
increases approximately linearly withφ as long asφ is small, and it gradually flattens off at angular scales
φ& φg≈ 20′.

In earlier chapters, we saw that non-linear density evolution has a large impact on weak gravitational
lensing effects, e.g. on the magnification auto-correlation functionξµ(φ). As mentioned before, this is not
the case for the deflection-angle auto-correlation functionξ~α(φ) and the varianceσ(φ) derived from it,
because the filter functionF(l ,φ) relevant here suppresses small-scale density fluctuations for which the
effect of non-linear evolution are strongest. Therefore, non-linear evolution is expected to have less impact
here. Only on small angular scalesφ, the filter function extends into the sufficiently non-linear regime. The
curves in Fig. 34 confirm and quantify this expectation. Only on scales ofφ. 10′, the non-linear evolution
does have some effect. Obviously, non-linear evolution increases the deflection-angle variance in a manner
quite independent of cosmology. At angular scalesφ≈ 1′, the increase amounts to roughly a factor of two
above the linear results.
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Figure 34: The deflection-angle varianceσ(φ) is shown for the four cosmological models specified in
Tab. 1 on page 78. Two curves are shown for each model, one for linear and one for non-linear evolution
of the density fluctuations. Solid curves: SCDM; dotted curve:σCDM; short-dashed curves: OCDM; and
long-dashed curves:ΛCDM. The somewhat steeper curves are for linear density evolution. Generally, the
deflection-angle variance increases linearly withφ for smallφ, and flattens gradually forφ& 20′. At φ≈10′,
σ(φ) reaches≈ 0.1′, or ≈ 0.01φ, for the cluster-normalised model universes (all exceptσCDM; dotted
curves). As expected, the effect of non-linear density evolution is fairly moderate, and most pronounced
on small angular scales,φ. 10′.

9.6 Change of CMB Temperature Fluctuations

9.6.1 Summary of Previous Results

We are now ready to justify assumptions and approximations made earlier, and to quantify the impact of
weak gravitational lensing on the Cosmic Microwave Background. The main assumptions were that (i) the
deflection-angle varianceσ(φ) is small, and (ii)σ(φ) ≈ εφ, with ε a (small) constant or a function slowly
varying withφ. The results obtained in the previous section show thatσ(φ) is typically about two orders
of magnitude smaller thanφ, confirmingε� 1. Likewise, Fig. 34 shows that the assumptionσ(φ) ∝ φ
is valid on angular scales smaller than the coherence scale for the deflection,φ . φg ≈ 20′. As we have
seen, this proportionality is a mere consequence of random coherent scattering of neighbouring light rays
in the fluctuating potential field. For angles larger thanφg, σ(φ) gradually levels off to become constant, so
that the ratio betweenσ(φ) andφ tends to zero whileφ increases further beyondφg. We can thus broadly
summarise the numerical results on the deflection-angle variance by

σ(φ)≈
{

0.01φ for φ. 20′

0.7′ for φ� 20′
, (390)

which is valid for cluster-normalised CDM quite independent of the cosmological model; in particular,
σ(φ)< 1′ ≈ 3×10−4 radians for allφ.

9.6.2 Simplifications

Accordingly, the argument of the exponential in eq. (365) is a truly small number. Even for largel ≈ 103,
l2σ2(φ)� 1. We can thus safely expand the exponential into a power series, keeping only the lowest-order
terms. Then, eq. (365) simplifies to

ξ′T(φ) = ξT(φ)−σ2(φ)
∫ ∞

0

l3dl
4π

PT(l) J0(lφ) , (391)
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where we have used that the auto-correlation functionξT(φ) is the Fourier transform of the power spectrum
PT(l). Employing again the approximate relation J0

′′(x) ≈ −J0(x)/2 which holds for smallx, we notice
that ∫ ∞

0

l3dl
4π

PT(l) J0(lφ)≈−∂2ξT(φ)
∂φ2 . (392)

We can introduce a typical angular scaleφc for the CMB temperature fluctuations in the same manner as
for light deflection in eq. (381). We defineφc by

φ−2
c ≡−

1
ξT(0)

∂2ξT(φ)
∂φ2

∣∣∣∣
φ=0

, (393)

so that, up to second order inφ, eq. (391) can be approximated as

ξ′T(φ)≈ ξT(φ)− σ2(φ)
φ2

c
ξT(0) . (394)

We saw earlier thatσ(φ)≈ εφ for φ. φg. Equation (394) can then further be simplified to read

ξ′T(φ)≈ ξT(φ)− ε2 ξT(0)
φ2

φ2
c
. (395)

In analogy to eq. (375), we can write the mean-square temperature fluctuations of the CMB between
two beams separated by an angleφ as

σ2
T(φ) =

〈
[τ(~θ)− τ(~θ +~φ)]2

〉
= 2 [ξT(0)−ξT(φ)] . (396)

Weak gravitational lensing changes this relative variance to

σ′2T = 2
[
ξ′T(0)−ξ′T(φ)

]
. (397)

Using eq. (395), we see that the relative variance isincreasedby the amount

∆σ2
T(φ) = σ′2T (φ)−σ2

T(φ)≈ ε2 ξT(0)
φ2

φ2
c
. (398)

Now, the auto-correlation function at zero lag,ξT(0), is the temperature-fluctuation variance,σ2
T. Hence,

we have for thermschange in the temperature variation[
∆σ2

T(φ)
]1/2

= εσT
φ
φc
. (399)

Weak gravitational lensing thus changes the CMB temperature fluctuations only by a very small amount,
of orderε≈ 10−2 for φ≈ φc.

9.6.3 The Lensed CMB Power Spectrum

However, we saw in eq. (372) that the gravitationally lensed CMB power spectrum is smoothed compared
to the intrinsic power spectrum. Modes on an angular scaleφ are mixed with modes on angular scales
φ±σ(φ), i.e. the relative broadeningδφ/φ is of order 2σ(φ)/φ. Forφ. φg ≈ 20′, this relative broadening
is of order 2ε≈ 2×10−2, while it becomes negligible for substantially larger scales becauseσ(φ) becomes
constant. This effect is illustrated in Fig. 35, where we show the unlensed and lensed CMB power spectra
for CDM in an Einstein-de Sitter universe.

The figure clearly shows that lensing smoothes the CMB power spectrum on small angular scales (large
l ), while it leaves large angular scales unaffected. Lensing effects become visible atl & 500, corresponding
to an angular scale ofφ. (π/500) rad≈ 20′, corresponding to the scale where coherent gravitational light
deflection sets in. An important effect of lensing is seen at the high-l tail of the power spectra, where the
lensed power spectrum falls systematically above the unlensed one (Metcalf & Silk 1997). This happens
because the Gaussian convolution kernel in eq. (372) becomes very broad for very largel , so that the lensed
power spectrum atl ′ can be substantially increased by intrinsic power from significantly smallerl . In other
words, lensing mixes power from larger angular scales into the otherwise feature-less damping tail ofPT(l).
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Figure 35: The CMB power spectrum coefficientsl(l + 1)Cl are shown as a function ofl . The solid line
displays the intrinsic power spectrum, the dotted line the lensed power spectrum for an Einstein-de Sitter
universe filled with cold dark matter. Evidently, lensing smoothes the spectrum at small angular scales
(largel ), while it has no visible effect on larger scales. The curves were produced with theCMBfast code,
see Zaldarriaga & Seljak (1998).

9.7 Discussion

Several different approximations entered the preceding derivations. Firstly, the deflection-angle variance
σ(φ) was generally assumed to be small, and for some expressions to be proportional toφ with a small
constant of proportionalityε. The numerical results showed that the first assumption is very well satisfied,
and the second assumption is valid forφ . φg, the latter being the coherence scale of gravitational light
deflection.

We further assumed the deflection-angle field to be a Gaussian random field, the justification being that
the deflecting matter distribution is also a Gaussian random field. While this fails to be exactly true at
late stages of the cosmic evolution, we have seen that the resulting expression can also be obtained when
σ(φ) is small and~α is not a Gaussian random field; hence, in practice this assumption is not a limitation of
validity.

A final approximation consists in the Born approximation. This should also be a reasonable assumption
at least in the case considered here, where we focus onstatisticalproperties of light propagation. Even if
the light rays would be bent considerably, the statistical properties of the potential gradient along their true
trajectories are the same as along the approximated unperturbed rays.

Having found all the assumptions made well justifiable, we can conclude that the random walk of light
rays towards the surface of recombination leads to smoothing of small-scale features in the CMB, while
large-scale features remain unaffected. The border line between small and large angular scales is deter-
mined by the angular coherence scale of gravitational light deflection by large-scale matter distributions,
which we found to be of orderφg ≈ 20′, corresponding tolg = 2πφ−1

g ≈ 1,000. For the smallest angular
scales, well into the damping tail of the intrinsic CMB power spectrum, this smoothing leads to a substan-
tial re-distribution of power, which causes the lensed CMB power spectrum to fall systematically above
the unlensed one atl & 2000, orφ . 2πl−1 ≈ 10′. Future space-bound CMB observations, e.g. by the
Planck Surveyor satellite, will achieve angular resolutions of order& 5′, so that the lensed regime of the
CMB power spectrum will be well accessible. Highly accurate analyses of the data of such missions will
therefore need to take lensing effects by large-scale structures into account.

One of the foremost goals of CMB observations is to derive cosmological parameters from the angular
CMB power spectrumCl . Unfortunately, there exists a parameter degeneracy in the sense that for any given
set of cosmological parameters fitting a given CMB spectrum, a whole family of cosmological models can
be found that will fit the spectrum (almost) equally well (Zaldarriaga et al. 1997). Metcalf & Silk (1998)
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and Stompor & Efstathiou (1999) showed that the rise in the damping-tail amplitude due to gravitational
lensing of the CMB can be used to break this degeneracy once CMB observations with sufficiently high
angular resolution become available.

We discussed in Sect. 4.2 how shapes of galaxy images can be quantified with the tensorQi j of second
surface-brightness moments. Techniques for the reconstruction of the intervening projected matter distri-
bution are then based on (complex) ellipticities constructed fromQi j , e.g. the quantityχ defined in (127).
Similar reconstruction techniques can be developed by constructing quantities comparable toχ from the
CMB temperature fluctuationsτ(~θ). Two such quantities were suggested in the literature, namely

τ2
,1− τ2

,2 +2iτ,1τ,2 (400)

(Zaldarriaga & Seljak 1999) and
τ,11− τ,22+2iτ,12 (401)

(Bernardeau 1997). As usual, comma-preceded indicesi denote differentiation with respect toθi .
The transformation of the tensorτ,iτ, j between the lensed and unlensed CMB anisotropy distribution is

mediated by the effective surface mass distributionκeff(~θ), defined as in (263) withw set to the comoving
distance to the last-scattering surface atz∼ 1000. As shown by Zaldarriaga & Seljak (1999) and Seljak
& Zaldarriaga (1999), one can reconstruct the power spectrum of the projected surface density from the
observed statistical properties ofτ,iτ, j ; in fact, this power spectrum can be obtained either from the trace-
part of this tensor, corresponding toκeff itself, or from the trace-free part, corresponding to the power
spectrum of the shear which, as was shown earlier, is the same as that ofκeff. In contrast to similar studies
based on the distortion of faint galaxies, the power-spectrum estimate from the CMB has the advantage that
the redshift of the source is known. Furthermore, the power spectrum of the projected matter distribution
can be obtained over a wide range of angular scales, corresponding to a wide range of spatial scales.

Even if the temperature anisotropies are intrinsically Gaussian, lensing will induce non-Gaussian fea-
tures of the measured temperature map (e.g., Winitzki 1998). Hence, measurements of non-Gaussian
temperature fluctuations must be interpreted with care. However, the lensing-induced non-Gaussian fea-
tures on small angular scales are correlated with large-scale temperature gradients (Zaldarriaga 1999), thus
providing a signature of the presence of lensing effects in the maps.

Lensing of the CMB can also be correlated with lensing effects of faint galaxies at lower redshift. The
shear acting on these galaxies is part of the shear acting on the CMB, the difference being due to the
different redshift of galaxies and the last scattering surface. Hence, one expects a correlation between these
two shears (van Waerbeke et al. 1999a), as can be measured by correlating galaxy ellipticities with either
of the quantities (400) or (401).

Finally, it is worth noting that gravitational lensing mixes different types of CMB polarisation (the
“electric” and “magnetic”, orE andB modes, respectively) and can thus createB-type polarisation even
when onlyE-type polarisation is intrinsically present (Zaldarriaga & Seljak 1998). This effect, however,
is fairly small in typical cosmological models and will only marginally affect future CMB polarisation
measurements.
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10 Summary and Outlook

We have summarised the basic ideas, theoretical developments, and first applications of weak gravitational
lensing. In particular, we showed how the projected mass distribution of clusters can be reconstructed from
the image distortion of background galaxies, using parameter-free methods, how the statistical mass distri-
bution of galaxies can be obtained from galaxy-galaxy lensing, and how the larger-scale mass distribution
in the Universe affects observations of galaxy shapes and fluxes of background sources, as well as the sta-
tistical properties of the CMB. Furthermore, weak lensing can be used to construct a mass-selected sample
of clusters of galaxies, making use only of their tidal gravitational field which leaves an imprint on the
image shapes of background galaxies. We have also discussed how the redshift distribution of these faint
and distant galaxies can be derived from lensing itself, well beyond the magnitude limit which is currently
available through spectroscopy.

Given that the first coherent image alignment of faint galaxies around foreground clusters was discov-
ered only a decade ago (Fort et al. 1988; Tyson et al. 1990), the field of weak lensing has undergone a
rapid evolution in the last few years, for three main reasons: (i) Theoreticians have recognised the potential
power of this new tool for observational cosmology, and have developed specific statistical methods for
extracting astrophysically and cosmologically relevant information from astronomical images. (ii) Parallel
to that effort, observers have developed new observing strategies and image analysis software in order to
minimise the influence of instrumental artefacts on the measured properties of faint images, and to control
as much as possible the point-spread function of the resulting image. It is interesting to note that sev-
eral image analysis methods, particularly aimed at shape measurements of very faint galaxies for weak
gravitational lensing, have been developed by a coherent effort of theoreticians and observers (Bonnet &
Mellier 1995; Kaiser et al. 1995; Luppino & Kaiser 1997; van Waerbeke et al. 1997; Kaiser 2000; Rhodes
et al. 2000; Kuijken 1999), indicating the need for a close interaction between these two groups which is
imposed by the research subject.

(iii) The third and perhaps major reason for the rapid evolution is the instrumental development that
we are witnessing. Most spectacular was the refurbishment of the Hubble Space Telescope (HST) in
Dec. 1993, after which this telescope produced astronomical images of angular resolution unprecedented in
optical astronomy. These images have not only been of extreme importance for studying multiple images
of galaxy-scale lens systems (where the angular separation is of order one arc second) and for detailed
investigations of giant arcs and multiple galaxy images in clusters of galaxies, but also for several of the
most interesting results of weak lensing. Owing to the lack of atmospheric smearing and the reduced
sky background from space, the shape of fainter and smaller galaxy images can be measured on HST
images, increasing the useful number density of background galaxies, and thus reducing the noise due to
the intrinsic ellipticity distribution. Two of the most detailed mass maps of clusters have been derived
from HST data (Seitz et al. 1996; Hoekstra et al. 1998), and all but one published results on galaxy-
galaxy lensing are based on data taken with the HST. In parallel to this, the development of astronomical
detectors has progressed quickly. The first weak-lensing observations were carried out with CCD detectors
of ∼ 1,0002 pixels, covering a fairly small field-of-view. A few years ago, the first(8K)2 camera was
used for astronomical imaging. Its 30′×30′ field can be used to map the mass distribution of clusters at
large cluster-centric radii, to investigate the potential presence of filaments between neighbouring clusters
(Kaiser et al. 1998), or simply to obtain high-quality data on a large area. Such data will be useful
for galaxy-galaxy lensing, the search for halos using their lensing properties only, for the investigation
of cosmic shear, and for homogeneous galaxy number counts on large fields, needed to obtain a better
quantification of the statistical association of AGNs with foreground galaxies.

It is easy to foresee that the instrumental developments will remain the driving force for this research
field. By now, several large-format CCD cameras are either being built or already installed, including
three cameras with a one square degree field-of-view and adequate sampling of the PSF (MEGAPRIME at
CFHT, MEGACAM at the refurbished MMT, and OMEGACAM at the newly built VLT Support Telescope
at Paranal; see the recent account of wide-field imaging instruments in Arnaboldi et al. 1998). Within a few
years, more than a dozen 8- to 10-meter telescopes will be operating, and many of them will be extremely
useful for obtaining high-quality astronomical images, due to their sensitivity, their imaging properties and
the high quality of the astronomical site. In fact, at least one of them (SUBARU on Mauna Kea) will
be equipped with a large-format CCD camera. One might hypothesise that weak gravitational lensing is
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one of the main science drivers to shift the emphasis of optical astronomers more towards imaging, in
contrast to spectroscopy. For example, the VLT Support Telescope will be fully dedicated to imaging,
and the fraction of time for wide-field imaging on several other major telescopes will be substantial. The
Advanced Camera for Surveys (ACS) is planned to be installed on the HST in 2001. Its larger field-of-
view, better sampling, and higher quantum efficiency – compared to the current imaging camera WFPC2 –
promises to be particularly useful for weak lensing observations.

Even more ambitious ground-based imaging projects are currently under discussion. Funding has been
secured for the VISTA project17 of a 4 m telescope in Chile with a field-of-view of at least one square
degree. Another 4 mDark Matter Telescopewith a substantially larger field-of-view (nine square degrees)
is being discussed specifically for weak lensing. Kaiser et al. (2000a) proposed a new strategy for deep,
wide-field optical imaging at high angular resolution, based on an array of relatively small (D ∼ 1.5 m)
telescopes with fast guiding capacity and a “rubber” focal plane.

Associated with this instrumental progress is the evolution of data-analysis capabilities. Whereas a
small-format CCD image can be reduced and analysed ‘by hand’, this is no longer true for the large-format
CCD images. Semi-automatic data-reduction pipelines will become necessary to keep up with the data
flow. These pipelines, once properly developed and tested, can lead to a more ‘objective’ data analysis. In
addition, specialised software, such as for the measurement of shapes of faint galaxies, can be implemented,
together with tools which allow a correction for PSF anisotropies and smearing.

Staying with instrumental developments for one more moment, the two planned CMB satellite missions
(MAP and Planck Surveyor) will provide maps of the CMB at an angular resolution and a signal-to-noise
ratio which will most likely lead to the detection of lensing by the large-scale structure on the CMB, as
described in Sect. 9. Last but not least, the currently planned Next Generation Space Telescope (NGST,
Kaldeich 1999), with a projected launch date of 2008, will provide a giant step in many fields of obser-
vational astronomy, not the least for weak lensing. It combines a large aperture (of order eight meters)
with a position far from Earth to reduce sky background and with large-format imaging cameras. Even a
relatively short exposure with the NGST, which will be optimised for observations in the near-infrared, will
return images with a number density of several hundred background galaxies per square arc minute, for
which a shape can be reliably measured; more accurate estimates are presently not feasible due to the large
extrapolation into unknown territory. Comparing this number with the currently achievable number density
in ground-based observations of about 30 per square arc minute, NGST will revolutionise this field.18 In
addition, the corresponding galaxies will be at much higher mean redshift than currently observable galaxy
samples. Taken together, these two facts imply that one can detect massive halos at medium redshifts with
only half the velocity dispersion currently necessary to detect them with ground-based data, or that the
investigations of the mass distribution of halos can be extended to much higher redshifts than currently
possible (see Schneider & Kneib 1998). The ACS on board HST will provide an encouraging hint of the
increase in capabilities that NGST has to offer.

Progress may also come from somewhat unexpected directions. Whereas the Sloan Digital Sky Survey
(SDSS; e.g. Szalay 1998) will be very shallow compared to more standard weak-lensing observations, its
huge angular coverage may compensate for it (Stebbins 1996). The VLA-FIRST survey of radio sources
(White et al. 1997) suffers from the sparsely populated radio sky, but this is also compensated by the
huge sky coverage (Refregier et al. 1998). The use of both surveys for weak lensing will depend critically
on the level down to which the systematics of the instrumental image distortion can be understood and
compensated for.

Gravitational lensing has developed from a stand-alone research field into a versatile tool for obser-
vational cosmology, and this also applies to weak lensing. But, whereas the usefulness of strong lensing
is widely accepted by the astronomical community, weak lensing is only beginning to reach that level of
wide appreciation. Part of this difference in attitude may be due to the fact that strong-lensing effects, such
as multiple images and giant arcs, can easily be seen on CCD images, and their interpretation can readily
be explained also to the non-expert. In contrast, weak lensing effects are revealed only through thorough

17see http://www-star.qmw.ac.uk/∼jpe/vista/
18Whereas with the 8- to 10-meter class ground-based telescopes deeper images can be obtained, this does not drastically affect the

‘useful’ number density of faint galaxy images. Since fainter galaxies also tend to become smaller, and since a reliable shape estimate
of a galaxy is feasible only if its size is not much smaller than the size of the seeing disk, very much deeper images from the ground
will not yield much larger number densities of galaxy images which can be used for weak lensing.
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statistical analysis of the data. Furthermore, the number of people working on weak lensing on the level
of data analysis is still quite small, and the methods used to extract shear from CCD data are rather intri-
cate. However, the analysis of CMB data is certainly more complicated than weak lensing analyses, but
there are more people in the latter field, who checked and cross-checked their results; also, more people
implies that much more development has gone into this field. Therefore, what is needed in weak lensing is
a detailed comparison of methods, preferably by several independent groups, analysing the same data sets,
together with extensive work on simulated data to investigate down to which level a very weak shear can
be extracted from them. Up to now, no show-stopper has been identified which prohibits the detection of
shear at the sub-percent level.

Weak-lensing results and techniques will increasingly be combined with other methods. A few ex-
amples may suffice to illustrate this point. The analysis of galaxy clusters with (weak) lensing will be
combined with results from X–ray measurements of the clusters and their Sunyaev-Zel’dovich decrement.
Once these methods are better understood, in particular in terms of their systematics, the question will no
longer be, “Are the masses derived with these methods in agreement?”, but rather, “What can we learn
from their comparison?” For instance, while lensing is insensitive to the distribution of matter along the
line-of-sight, the X–ray emission is, and thus their combination provides information on the depth of the
cluster (see, e.g., Zaroubi et al. 1998). Joint analyses of weak-lensing, X–ray and Sunyaev-Zel’dovich
data on galaxy clusters promise to substantially improve determinations of the baryonic-matter fraction in
clusters and of the structure and distribution of cluster-galaxy orbits.

One might expect that clusters will continue for some time to be main targets for weak-lensing studies.
In addition to clusters selected by their emission, mass concentrations selected only by their weak-lensing
properties shall be investigated in great detail, both with deeper images to obtain a more accurate mea-
surement of the shear, and by X-ray, IR, sub-mm, and optical/IR multi-colour techniques. It would be
spectacular, and of great cosmological significance, to find mass concentrations of exceedingly high mass-
to-light ratio (well in excess of 1,000 in solar units), and it is important to understand the distribution of
M/L for clusters. A first example may have been found by Erben et al. (2000).

As mentioned before, weak lensing is able to constrain the redshift distribution of very faint ob-
jects which do not allow spectroscopic investigation. Thus, lensing can constrain extrapolations of the
z-distribution, and the models for the redshift estimates obtained from multi-colour photometry (‘photo-
metric redshifts’). On the other hand, photometric redshifts will play an increasingly important role for
weak lensing, as they will allow to increase the signal-to-noise ratio of local shear measurements. Fur-
thermore, if source galaxies at increasingly higher redshifts are considered (as will be the case with the
upcoming giant telescopes, cf. Clowe et al. 1998), the probability increases that more than one deflector
lies between us and this distant screen of sources. To disentangle the corresponding projection effects, the
dependence of the lensing strength on the lens and source redshift can be employed. Lenses at different
redshifts cause different source-redshift dependences of the measured shear. Hence, photometric redshifts
will play an increasingly important role for weak lensing. Whereas a fully three-dimensional mass distri-
bution will probably be difficult to obtain using this relatively weak redshift dependence, a separation of
the mass distribution into a small number of lens planes appears feasible.

Combining results from cosmic-shear measurements with the power spectrum of the cosmic density
fluctuations as measured from the CMB will allow a sensitive test of the gravitational instability picture
for structure formation. As was pointed out by Hu & Tegmark (1999), cosmic-shear measurements can
substantially improve the accuracy of the determination of cosmological parameters from CMB experi-
ments, in particular by breaking the degeneracies inherent in the latter (see also Metcalf & Silk 1998). The
comparison between observed cosmic shear and theory will at least partly involve the increasingly detailed
numerical simulations of cosmic structure evolution, from which predictions for lensing observations can
directly be obtained. For example, if the dark matter halos in the numerical simulations are populated
with galaxies, e.g., by using semi-empirical theories of galaxy evolution (Kauffmann et al. 1997), detailed
prediction for galaxy-galaxy lensing can be derived and compared with observations, thus constraining
these theories. The same numerical results will predict the relation between the measured shear and the
galaxy distribution on larger scales, which can be compared with the observable correlation between these
quantities to investigate the scale- and redshift dependence of the bias factor.

The range of applications of weak lensing will grow in parallel to the new instrumental developments.
Keeping in mind that many discoveries in gravitational lensing were not really expected (like the existence
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of Einstein rings, or giant luminous arcs), it seems likely that the introduction and extensive use of wide-
field cameras and giant telescopes will give rise to real surprises.
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1999, A&A, submitted; preprint astro-ph/9909518

[Audit & Simmons 1999] Audit, E. & Simmons, J. F. L., 1999, MNRAS, 303, 87

[Babul & Lee 1991] Babul, A. & Lee, M. H., 1991, MNRAS, 250, 407

[Bacon et al. 2000] Bacon, D., Refregier, A., & Ellis, R., 2000, MNRAS, in press; preprint astro-
ph/0003008

[Bahcall & Fan 1998] Bahcall, N. & Fan, X., 1998, ApJ, 504, 1

[Bahcall 1977] Bahcall, N. A., 1977, ARA&A, 15, 505

[Bahcall 1988] Bahcall, N. A., 1988, ARA&A, 26, 631
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